Tag Archives: poetry

Linking Newspaper Rings, Pascal’s Colors, and Poetry of Math

Welcome to this week’s Math Munch!

Here’s something that sounds impossible: turn a single newspaper page into two rings, linked together, using only scissors and folding. No tape, no glue– just folding and a few little cuts.

Want to know how to do it? Check out this video by Mariano Tomatis:

On his website, Mariano calls himself the “Wonder Injector,” a “writer of science with the mission of the magician.” And that video certainly looked like magic! I wonder how the trick works…

Mariano’s website is full of fun videos involving mathe-magical tricks. I like watching them, being completely baffled, and then figuring out how the trick works. Here’s another one that I really like, about a fictional plane saved from crashing. It’s a little creepy.

How does this trick work???

Next up is one of my favorite number pattern — Pascal’s Triangle. Pascal’s Triangle appears all over mathematics– from algebra to combinatorics to number theory.

Pascal’s Triangle always starts with a 1 at the top. To make more rows, you add together two numbers next to each other and put their sum between them in the row below. For example, see the two threes beside each other in the fourth row? They add to 6, which is placed between them in the fifth row.

Pascal’s Triangle is full of interesting patterns (what can you find?)– but my favorite patterns appear when you color the numbers according to their factors.

That’s just what Brent Yorgey, computer programmer and author of the blog “The Math Less Travelled,” did! Here’s what you get if you color all of the numbers that are multiples of 2 gray and all of the numbers that aren’t multiples of 2 blue.

Recognize that pattern? It’s a Sierpinski triangle fractal!

If you thought that was cool, check out this one based on what happens if you divide all the numbers in the triangle by 5. The multiples of 5 are gray; the numbers that leave a remainder of 1 when divided by 5 are blue, remainder 2 are red, remainder 3 are yellow, and remainder 4 are green. And here’s one based on what happens if you divide all the numbers in the triangle by 6.

See the yellow Sierpinski triangle below the blue, red, green, and purple pattern? Why might the pattern for multiples of two appear in the triangle colored based on multiples of 6?

If you want to learn more about how Brent made these images and want to see more of them, check out his blog post, “Visualizing Pascal’s Triangle Remainders.”

Finally, I just stumbled across this collection of mathematical poems written by students at Arcadia University, in a class called “Mathematics in Literature.” They’re the result of a workshop led by mathematician and poet Sarah Glaz, who I met this summer at the Bridges Mathematical Art Conference. Sarah gave the students this prompt:

Step1: Brainstorm three recent school or other situations in your

present life – you can just write a few words to reference them.

Step 2: List 10-20 mathematical words you’ve used in class in the
past month.

Step 3: Write about one of the previous situations using as many
of these words as possible. Try to avoid referencing the situation
directly. Write no more than seven words per line.

Here’s one that I like:

ASPARAGUS, by Sarah Goldfarb

An infinity of hunger within me
Dividing a bunch of green
Snap and sizzle,
Green parentheses in a pan
The aromatic property
Simplifying my want
Producing a need
Each fraction of a second
Dragging its feet impatiently as I wait
And when it is distributed on my plate
It is only a moment before zero
Units of nourishment remain.

Maybe you’ll try writing a poem of your own! If you do, we’d love to see it.

Bon appetit!

Mike Naylor, Math Magic, and Mazes

Mathematical artist, Mike Naylor juggling 5 balls.

Welcome to this week’s Math Munch!

Last week, Justin told you about our time at Bridges 2012, the world’s largest conference of mathematics and art, and I must reiterate: this was one of the coolest things I’ve ever been a part of. The art was gorgeous. The people were great. I’m pretty sure I was beaming with excitement. At dinner we met, Mike Naylor, a mathematical artist and generally fantastic guy living in Norway. You can read his full artist’s statement and artwork from the Bridges exhibition, but here’s an excerpt:

“Much of my artwork focuses on the use of the human body to represent geometric concepts, but I also enjoy creating abstract works that capture mathematical ideas in ways that are pleasing, surprising and invite further reflection.”

Meeting Mike was especially exciting for me, because just days earlier, I’d fallen in love with Mike’s math blog. This week, I’ll be sharing some of the gems I’ve found there:

I didn’t even mention abacaba.org, yet another amazing Mike Naylor project.  It’s a site devoted entirely to one pattern: A, aBa, abaCaba, abacabaDabacaba,…

Since Justin introduced mathematical poetry last week, check out one of Mike’s mathematical poems called “Decision Tree.” What a clever idea! Like Mike, I’m a juggler, so I absolutely loved his Fractal Juggler animation, which shows a juggler juggling jugglers juggling jugglers… Clever idea #2! And for a third clever idea, check out the Knight Maze he designed. Wow!

“Decision Tree”

“Fractal Juggler”

“Knight Maze”

The most squares of whole area that will fit in a square of area 17.

Speaking of mazes, I found a whole bunch of cool ones when I was poking around the Math Magic site hosted by Stetson University. Each month Math Magic poses a math question for readers to work on and then submit their solutions. This month’s question is about packing squares in squares. (Click to see the submissions so far.)  At the bottom of the page you can find links to many more cool math sites, but as promised, I’ll share some of the mazes I found.

A puzzle designer for over 40 years, here Andrea Gilbert lays across one of her step-over sequence mazes.

First there’s Andrea Gilbert’s site, Click Mazes, which has all sorts of online mazes and puzzles.  In the picture you can see Andrea laying in one of her step-over sequence mazes.  How do you figure they work?

Then there’s Logic Mazes, a website of mazes by Robert Abbott. I don’t know much about Robert, but his site caught my eye because it begins with Five Easy Mazes: 1 2 3 4 5, but there are better mazes after that. I really liked the number mazes. Play around, think your way through, and have some fun!

Bon appetit!

Number Mazes

Eyeball Mazes

Alice Mazes

Bridges, Meander Patterns, and Water Sports

This past week the Math Munch team got to attend the Bridges 2012. Bridges is a mathematical art conference, the largest one in the world. This year it was held at Towson University outside of Baltimore, Maryland. The idea of the conference is to build bridges between math and the arts.

Participants gave lectures about their artwork and the math that inspired or informed it. There were workshop sessions about mathematical poetry and chances to make baskets and bead bracelets involving intricate patterns. There was even a dance workshop about imagining negative-dimensional space! There were also some performances, including two music nights (which included a piece that explored a Fibonacci-like sequence called Narayana’s Cows) and a short film festival (here are last year’s films). Vi Hart and George Hart talked about the videos they make and world-premiered some new ones. And at the center of it all was an art exhibition with pieces from around the world.

The Zen of the Z-Pentomino by Margaret Kepner

Does this piece by Bernhard Rietzl
remind you of a certain sweater?

5 Rhombic Screens by Alexandru Usineviciu

Pythagorean Proof by Donna Loraine

To see more, you should really just browse the Bridges online gallery.

A shot of the gallery exhibition

I know that Paul, Anna, and I will be sharing things with you that we picked up at Bridges for months to come. It was so much fun!

David Chappell

One person whose work and presentation I loved at Bridges is David Chappell. David is a professor of astronomy at the University of La Verne in California.

David shared some thinking and artwork that involve meander patterns. “Meander” means to wander around and is used to describe how rivers squiggle and flow across a landscape. David uses some simple and elegant math to create curve patterns.

Instead of saying where curves sit in the plane using x and y coordinates, David describes them using more natural coordinates, where the direction that the curve is headed in depends on how far along the curve you’ve gone. This relationship is encoded in what’s called a Whewell equation. For example, as you walk along a circle at a steady rate, the direction that you face changes at a contant rate, too. That means the Whewell equation of a circle might look like angle=distance. A smaller circle, where the turning happens faster, could be written down as angle=2(distance).

Look at how the Cauto River “meanders” across the Cuban landscape.

In his artwork, David explores curves whose equations are more complicated—ones that involve multiple sine functions. The interactions of the components of his equations allow for complex but rhythmic behavior. You can create meander patterns of your own by tinkering with an applet that David designed. You can find both the applet and more information about the math of meander patterns on David’s website.

David Chappell’s Meander #6
Make your own here!

When I asked David about how being a scientist affects his approach to making art, and vice versa, he said:

My research focuses on nonlinear dynamics and pattern formation in fluid systems. That is, I study the spatial patterns that arise when fluids are agitated (i.e. shaken or stirred). I think I was attracted to this area because of my interest in the visual arts. I’ve always been interested in patterns. The science allows me to study the underlying physical systems that generate the patterns, and the art allows me to think about how and why we respond to different patterns the way we do.  Is there a connection between how we respond to a visual image and the underlying “rules” that produced the image?  Why to some patterns look interesting, but others not so much?

For more of my Q&A with David, click here. In addition, David will be answering questions in the comments below, so ask away!

Since bridges and meandering rivers are both water-related, I thought I’d round out this post with a couple of interesting links about water sports and the Olympics. My springboard was a site called Maths and Sport: Countdown to the Games.

No wiggle rigs

Arrangements of rowers that are “wiggle-less”

Here’s an article that explores different arrangements of rowers in a boat, focusing on finding ones where the boat doesn’t “wiggle” as the rowers row. It’s called Rowing has its Moments.

Next, here’s an article about the swimming arena at the 2008 Beijing games, titled Swimming in Mathematics.


Paul used to be a competitive diver, and he says there’s an interesting code for the way dives are numbered.  For example, the “Forward 1 ½ Somersaults in Tuck Position” is dive number 103C.  How does that work?  You can read all about it here.  (Degree of difficulty is explained as well.)

Finally, enjoy these geometric patterns inspired by synchronized swimming!

Stay cool, and bon appetit!