Tag Archives: spirals

Girls’ Angle, Spiral Tilings, and Coins

Welcome to this week’s Math Munch!

GirlsAngleCoverGirls’ Angle is a math club for girls. Since 2007 it has helped girls to grow their love of math through classes, events, mentorship, and a vibrant mathematical community. Girls’ Angle is based in Cambridge, Massachusetts, but its ideas and resources reach around the world through the amazing power of the internet. (And don’t you worry, gentlemen—there’s plenty for you to enjoy on the site as well.)

Amazingly, the site contains an archive of every issue of Girls’ Angle Bulletin, a wonderful bimonthly journal to “foster and nurture girls’ interest in mathematics.” In their most recent issue, you’ll find an interview with mathematician Karen E. Smith, along with several articles and puzzles about balance points of shapes.

There’s so much to dig into at Girls’ Angle! In addition to the Bulletins, there are two pages of mathematical videos. The first page shares a host of videos of women in mathematics sharing a piece of math that excited them when they were young. The most recent one is by Bridget Tenner, who shares about Pick’s Theorem. The second page includes several videos produced by Girls’ Angle, including this one called “Summer Vacation”.

Girls’ Angle can even help you buy a math book that you’d like, if you can’t afford it. For so many reasons, I hope you’ll find some time to explore the Girls’ Angle site over your summer break. (And while you’ve got your explorer’s hat on, maybe you’ll tour around Math Munch, too!)

I did a Google search recently for “regular tilings.” I needed a few quick pictures of the usual triangle, square, and hexagon tilings for a presentation I was making. As I scrolled along, this image jumped out at me:

hexspiral

What is that?! It certainly is a tiling, and all the tiles are the “same”—even if they are different sizes. Neat!

Clicking on the image, I found myself transported to a page all about spiral tilings at the Geometry Junkyard. The site is a whole heap of geometrical odds and ends—and a place that I’ve stumbled across many times over the years. Here are a few places to get started. I’m sure you’ll enjoy poking around the site to find some favorite “junk” of your own.

Spirals

Spirals

Circles and spheres

Circles & spheres

Coloring

Coloring

Last up this week, you may have seen this coin puzzle before. Can you make the triangle point downwards by moving just three pennies?triangleflip

There are lots of variants of this puzzle. You can find some in an online puzzle game called Coins. In the game you have to make arrangements of coins, but the twist is that you can only move a coin to a spot where would it touch at least two other coins. I’m enjoying playing Coins—give it a try!

I solved this Coins puzzle in four moves. Can you? Can you do better?

I solved this Coins puzzle in four moves. Can you? Can you do better?

That’s it for this week’s Math Munch. Bon appetit!

 

A Periodic Table, Linkages, and Dance Squared

Welcome to this week’s Math Munch!

Screen Shot 2013-11-14 at 10.14.36 PM

I like finding new ways of organizing information. That’s part of why I enjoy this Periodic Table of Mathematicians.

The letters in the table are the abbreviations of the chemical elements—like gold, helium, and iron—that are found on the usual periodic table. With a little creativity, they can also be abbreviations for the names of a bunch of celebrated mathematicians. Clicking on a square brings up the mathematician’s biography. I like guessing who might pop up!

The table was created by Erich Friedman, a mathematician who works at Stetson University in Florida. We’ve previously shared Erich’s holiday puzzles (here) and weight puzzles (here) and monthly research contest (here), but there’s even more to explore on his site. I’m partial to his Packing Center, which shows the best ways that have been found to pack shapes inside of other shapes. You might also enjoy his extensive listing of What’s Special About This Number?—a project in the same spirit as Tanya Khovanova’s Number Gossip.

A dense packing of 26 squares within a square that Erich discovered.

A dense packing of 26 squares within a square that Erich discovered.

whats

I wonder what a multiplicative persistence is?

ttree_q150x150autoNext up, another Erik—Erik Demaine, whose work we’ve also often featured. What does he have for us this time? Some fantastic uncurling linkages, that’s what!

In 2000, Erik worked with Robert Connelly and Günter Rote to show that any wound-up 2D shape made of hinged sticks can be unwound without breaking, crossing, or lifting out of the plane. In the end, the shape must be convex, so that it doesn’t have any dents in it. For a while Erik and his colleagues thought that some linkages might be “locked” and unwinding some of the examples they created took months. You can find some great animations shared on the webpage that describes their result that locked linkages don’t in fact exist.

One thing that amazes me about Erik’s mathematical work is how young the problems are that he works on and solves. You might think a problem that can be put in terms of such simple ideas would have been around for a while, but in fact this problem of unwinding linkages was first posed only in the 1970s! It just goes to show that there are new simple math problems just waiting to be invented all the time.

Finally, I was so glad to run across this short film called Dance Squared. It was made by René Jodoin, a Canadian director and producer. Check out how much René expresses with just a simple square!

There’s a wonderful celebration of René titled When I Grow Up I Want To Be René Jodoin—written back in 2000 when René was “only” 80 years old. Now here’s 92! Making math is for people of all ages. You might also enjoy watching René’s Notes on a Triangle.

Bon appetit!

Reflection Sheet – A Periodic Table, Linkages, and Dance Squared

Partial Cubes, Open Cubes, and Spidrons

Welcome to this week’s Math Munch!

Recently the videos that Paul and I made about the Yoshimoto Cube got shared around a bit on the web. That got me to thinking again about splitting cubes apart, because the Yoshimoto Cube is made up of two pieces that are each half of a cube.

A part of Wall Drawing #601 by Sol LeWitt

A part of Wall Drawing #601
by Sol LeWitt

A friend of mine once shared with me some drawings of cubes by the artist Sol LeWitt. The cubes were drawn as solid objects, but parts of them were cut away and removed. It was fun trying to figure out what fraction of a cube remained.

On the web, I found a beautiful image that Sol made called Wall Drawing #601. In the clipping of it to the left, I see 7/8 of a cube and 3/4 of a cube. Do you? You can view the whole of this piece by Sol on the website of the Greater Des Moines Public Art Foundation.

The Cube Vinco by Vaclav Obsivac.

The Cube Vinco by Vaclav Obsivac.

There are other kinds of objects that break a cube into pieces in this way, like this tricky puzzle by Vaclav Obsivac and this “shaved” Rubik’s cube modification. Maybe you’ll design a cube dissection of your own!

As I further researched Sol LeWitt’s art, I found that he had investigated partial cubes in other ways, too. My favorite of Sol’s tinkerings is the sculpture installation called “Variations of Incomplete Cubes“. You can check out this piece of artwork on the SFMOMA site, as well as in the video below.

In the video, a diagram appears that Sol made of all of the incomplete open cubes. He carefully listed out and arranged these pictures to make sure that he had found them all—a very mathematical task. It reminds me of the list of rectangle subdivisions I wrote about in this post.

sollewitt_variationsonincompleteopencubes_1974

Sol’s diagram got me to thinking and making: what other shapes might have interesting “incomplete open” variations? I started working on tetrahedra. I think I might try to find and make them all. How about you?

Two open tetrahedra I made. Can you find some more?

Two open tetrahedra I made. Can you find some more?

Finally, as I browsed Google Images for “half cube”, one image in particular jumped out at me.

half-cube-newnweb

What are those?!?!

Dániel's original spidron from 1979

Dániel’s original spidron from 1979

These lovely rose-shaped objects are called spidrons—or more precisely, they appear to be half-cubes built out of fold-up spidrons. What are spidrons? I had never heard of them, but there’s one pictured to the right and they have their own Wikipedia article.

The first person who modeled a spidron was Dániel Erdély, a Hungarian designer and artist. Dániel started to work with spidrons as a part of a homework assignment from Ernő Rubik—that’s right, the man who invented the Rubik’s cube.

A cube with spidron faces.

A cube with spidron faces.

Two halves of an icosahedron.

Two halves of an icosahedron.

A hornflake.

A hornflake.

Here are two how-to videos that can help you to make a 3D spidron—the first step to making lovely shapes like those pictured above. The first video shows how to get set up with a template, and the second is brought to you by Dániel himself! Watching these folded spidrons spiral and spring is amazing. There’s more to see and read about spidrons in this Science News article and on Dániel’s website.

And how about a sphidron? Or a hornflake—perhaps a cousin to the flowsnake? So many cool shapes!

To my delight, I found that Dániel has created a video called Yoshimoto Spidronised—bringing my cube splitting adventure back around full circle. You’ll find it below. Bon appetit!

Reflection Sheet – Partial Cubes, Open Cubes, and Spidrons