Tag Archives: history

Math Cats, Frieze Music, and Numbers

Welcome to this week’s Math Munch!

I just ran across a website that’s chock full of cool math applets, links, and craft ideas – and perfect for fulfilling those summer math cravings!  Math Cats was created by teacher and parent Wendy Petti to, as she says on her site, “promote open-ended and playful explorations of important math concepts.”

Math Cats has a number of pages of interesting mathematical things to do, but my favorite is the Math Cats Explore the World page.  Here you’ll find links to cool math games and explorations made by Wendy, such as…

… the Crossing the River puzzle!  In this puzzle, you have to get a goat, a cabbage, and a wolf across a river without any of your passengers eating each other!  And…

… the Encyclogram!  Make beautiful images called harmonograms, spirographs, and lissajous figures with this cool applet.  Wendy explains some of the mathematics behind these images, too. And, one of my favorites…

Scaredy Cats!  If you’ve ever played the game NIM, this game will be very familiar.  Here you play against the computer to chase cats away – but don’t be left with the last cat, or you’ll lose!

These are only a few of the fun activities to try on Math Cats.  If you happen to be a teacher or parent, I recommend that you look at Wendy’s Idea Bank.  Here Wendy has put together a very comprehensive and impressive list of mathematics lessons, activities, and links contributed by many teachers.

Next, Vi Hart has a new video that showcases one of my favorite things in mathematics – the frieze.  A frieze is a pattern that repeats infinitely in one direction, like the footsteps of the person walking in a straight line above.  All frieze patterns have translation symmetry – or symmetry that slides or hops – but some friezes have additional symmetries.  The footsteps above also have glide reflection symmetry – a symmetry that flips along a horizontal line and then slides.  Frieze patterns frequently appear in architecture.  You can read more about frieze patterns here.

Reading about frieze patterns is all well and good – but what if you could listen to them?  What would a translation sound like?  A glide reflection?  The inverse of a frieze pattern?  Vi sings the sounds of frieze patterns in this video.

[youtube http://www.youtube.com/watch?v=Av_Us6xHkUc&feature=BFa&list=UUOGeU-1Fig3rrDjhm9Zs_wg]

Do you have your own take on frieze music?  Send us your musical compositions at MathMunchTeam@gmail.com .

Finally, if I were to ask you to name the number directly in the middle of 1 and 9, I bet you’d say 5.  But not everyone would.  What would these strange people say – and why would they also be correct?  Learn about this and some of the history, philosophy, and psychology of numbers – and hear some great stories – in this podcast from Radiolab.  It’s called Numbers.

Bon appetit!

P.S. – Paul made a new Yoshimoto video!  The Mega-Monster Mesh comes alive!  Ack!

[youtube https://www.youtube.com/watch?v=PMpr8pA5lJw&feature=player_embedded]

P.P.S. – Last week – June 28th, to be exact – was Tau Day.  For more information about Tau Day and tau, check out the last bit of this old Math Munch post.  In honor of the occasion, Vi Hart made this new tau video.  And there’s a remix.

Polyominoes, Rubix, and Emmy Noether

Welcome to this week’s Math Munch!

Check out the Pentomino Project, a website devoted to all things about polyominoes by students and teachers from the K. S. O. Glorieux Ronse school in Belgium.

Their site is full of lots of useful information about polyominoes, such as what the different polyominoes look like and how they are formed.

In this puzzle, place the twelve pentominoes as "islands in a sea" so that the area of the sea is a small as possible. The pentominoes can't touch, even at corners. Here's a possible solution.

Even more awesome, though, is their collection of polyomino puzzles – about dissections, congruent pieces, tilings, and more!  They have a contest every year  – and people from around the world are encouraged to participate!  If you solve a puzzle, you can send them your solution and they might post it on their site.

Next, have you ever thought to yourself, “Gee, I wonder if I can make my own Rubix Cube?”  Well, sixth grader August did just that.  And, after several days of searching for patterns and working hard with paper, scissors, string, and tape, August succeeded!  His 2-by-2 Rubix Cube works just like any other, is fun to play with, and – even better – was fun to make.

Try it yourself:

Finally, ever heard of Emmy Noether?  It’s not surprising if you haven’t, because, according a New York Times article about her, “few can match in the depths of her perverse and unmerited obscurity….”  But, she was one of the most influential mathematicians and scientists of the 20th century – and was named by Albert Einstein the most “significant” and “creative” woman mathematician of all time.  You can read about Emmy’s influential theorem, and her struggles to become accepted in the mathematical community as a Jewish woman, in this article.

Want to learn more about women mathematicians throughout history?  Check out this site of biographies from Agnes Scott College.

Bon appetit!

Math Craft, Philippa Fawcett, and Mandelbrot

Welcome to this week’s Math Munch!

Math Craft is a supersweet website where members submit their mathematically inspired art and instructions about how to make your own.  I love the polyhedra made out of pennies in the masthead, these curve stitches, and these polyhedral pumpkins!  Here is a link to Math Craft’s welcome page, authored by admin Cory Poole.  Cory is a math and physics teacher at University Preparatory School in California. The welcome page includes some instructions for creating some great paper polyhedra. Math Craft is just starting up; I’m sure there will be many more great project to be found there in the future!

Philippa Fawcett, who broke the glass ceiling of Cambridge mathematics

An article recently appeared on the Past Imperfect blog on Smithsonian.com about the compelling story of Philippa Fawcett. Fawcett was the first and only woman to make the highest score on the Cambridge tripos mathematical exam.  She did so during an age when the predominant opinion was that women were incapable and weak and certainly couldn’t excel at mathematics.  Fawcett’s performance on this exam did much to dispel this prejudice.  The article not only relates an interesting chapter from history, but also give an inspiring account of a person’s drive to success despite enormous obstacles.

Finally, by request, a journey through the Mandelbrot set:

[youtube http://www.youtube.com/watch?v=F_nfHY61T-U&feature=related]

Benoit Mandelbrot, the father of fractal geometry, passed away about a year ago. You can listen to his outstanding TED talk about his life’s work here. I love his enthusiasm and curiosity, as well as how he can find marvels in the seemingly ordinary.  Also, how much fun is the way he pronounces “cauliflower”?!  You can find a memorial to Benoit Mandelbrot in last November’s edition of Peer Points.

Bon appetit!