Category Archives: Math Munch

Math Meets Art, Quarto, and Snow!

This week we hope you’ll enjoy this flashback to December 2013! Grab your scissors, string, and dominoes and get started!

Math Munch

Welcome to this week’s Math Munch!

article-0-19F9E81700000578-263_634x286… And, if you happen to write the date in the European way (day/month/year), happy Noughts and Crosses Day! (That’s British English for Tic-Tac-Toe Day.) In Europe, today’s date is 11/12/13– and it’s the last time that the date will be three consecutive numbers in this century! We in America are lucky. Our last Noughts and Crosses Day was November 12, 2013 (11/12/13), and we get another one next year on December 13 (12/13/14). To learn more about Noughts and Crosses Day and find out about an interesting contest, check out this site. And, to our European readers, happy Noughts and Crosses Day!

p3p13Speaking of Noughts and Crosses (or Tic-Tac-Toe), I have a new favorite game– Quarto! It’s a mix of Tic-Tac-Toe and another favorite game of mine, SET, and it was introduced to me by a friend of mine. It’s…

View original post 267 more words

Nautilus, The Riddler, and Brain Pickings

Welcome to this week’s Math Munch!

Sometimes math pops up in places when you aren’t even looking for it. This week I’d like to share three websites that I enjoy. What they have in common is that they all cover a wide range of subjects—astronomy, politics, pop culture—but also host some great math if you know where to look for it.

nautilusFirst up is a site called Nautilus. In their own words, “We are here to tell you about science and its endless connections to our lives.” Each month they publish articles around a theme. This month’s theme is “Heroes.” Included in Nautilus’s mission is discussing mathematics, and you can find their math articles on this page. Here are a few articles to get you started. Read about how Penrose tiles have made the leap from nonrepeating abstraction to the real world—including to kitchen items. Learn about one of math’s beautiful monsters and how it shook the foundations of calculus. Or you might be interested in learning about how a mathematician is using computers to change the way we write proofs.

riddler_4x3_defaultNext, you might think that, since the presidential election is now over, you won’t be heading to Nate Silver’s FiveThirtyEight quite as often. But do you know about the site’s column called The Riddler? Each week Oliver Roeder shares two puzzles, the newer Riddler Express and the Riddler Classic. Readers can send in their solutions, and some get featured on the website—that could be you! Here are a couple of puzzles to get you started, and you can also check out the full archive. The Puzzle of the Lonesome King asks about the chances that someone will win a prince-or-princess-for-a-day competition. Can You Win This Hot New Game Show? asks you to come up with a winning strategy for a round of Highest Number Wins. And Solve The Puzzle, Stop The Alien Invasion is just what is says on the tin.


The third site I’d like to point you to is Brain Pickings. It’s a wide-ranging buffet of short articles on all kinds of topics, written and curated by Maria Popova. If you search Brain Pickings for math, all kinds of great stuff will pop up. You can read about John ConwayPaul Erdős, Margaret WertheimBlaise Pascal, and more. You’ll find book recommendations, videos, history, and artwork galore. I particularly want to highlight Maria’s article about the trailblazing African American women who helped to put a man on the moon. Their story is told in the book Hidden Figures by Margot Lee Shetterly, and the feature film by the same name is coming soon to a theater near you!

I hope you find lots to dig into on these sites. Bon appetit!

Pixel Art, Gothic Circle Patterns, and First Past the Post

For this week’s Math Munch, we have a re-run from four years ago– which just happened to be our first anniversary on Math Munch and the end of the previous presidential election. What were we thinking about then, and what are we thinking about now?


Welcome to this week’s Math Munch!

Guess what? Today is Math Munch’s one-year anniversary!

We’re so grateful to everyone who has made this year so much fun: our students and readers; everyone who has spread the word about Math Munch; and especially all the people who do and make the cool mathy things that we so love to find and share.

Speaking of which…

Mathematicians have studied the popular puzzle called Sudoku in numerous ways. They’ve counted the number of solutions. They’ve investigated how few given numbers are required to force a unique solution. But Tiffany C. Inglis came at this puzzle craze from another angle—as a way to encode pixel art!

Tiffany studies computer graphics at the University of Waterloo in Ontario, Canada. She’s a PhD candidate at the Computer Graphics Lab (which seems like an amazing place to work and study—would you check out these mazes!?)

Tiffany C. Inglis, hoisting a buckyball

Tiffany tried to find shading schemes for Sudoku puzzles so that pictures would emerge—like the classic mushroom pictured above. Sudoku puzzles are a pretty restrictive structure, but Tiffany and her collaborators had some success—and even more when they loosened the rules a bit. You can read about (and see!) some of their results on this rad poster and in their paper.

Thinking about making pictures with Sudoku puzzles got Tiffany interested in pixel art more generally. “I did some research on how to create pixel art from generic images such as photographs and realized that it’s an unexplored area of research, which was very exciting!” Soon she started building computer programs—algorithms—to automatically convert smooth line art into blockier pixel art without losing the flavor of the original. You can read more about Tiffany’s pixelization research on this page of her website. You should definitely check out another incredible poster Tiffany made about this research!

To read more of my interview with Tiffany, you can click here.

Cartoon Tiffany explains what makes a good pixelization. Check out the full comic!

I met Tiffany this past summer at Bridges, where she both exhibited her artwork and gave an awesome talk about circle patterns in Gothic architecture. You may be familiar with Apollonian gaskets; Gothic circle patterns have a similar circle-packing feel to them, but they have some different restrictions. Circles don’t just squeeze in one at a time, but come in rings. It’s especially nice when all of the tangencies—the places where the circles touch—coincide throughout the different layers of the pattern. Tiffany worked on the problem of when this happens and discovered that only a small family has this property. Even so, the less regular circle patterns can still produce pleasing effects. She wrote about this and more in her paper on Gothic circle patterns.

I’m really inspired by how Tiffany finds new ideas in so many place, and how she pursues them and then shares them in amazing ways. I hope you’re inspired, too!

A rose window at the Milan Cathedral, with circle designs highlighted.

A mathematical model similar to the window, which Tiffany created.

An original design by Tiffany. All of these images are from her paper.

Here’s another of Tiffany’s designs. Now try making one of your own!

Using the Mathematica code that Tiffany wrote to build her diagrams, I made an applet where you can try making some circle designs of your own. Check it out! If you make one you really like—and maybe color it in—we’d love to see it! You can send it to us at

(You’ll may have to download a plug-in to view the applet; it’s the same plug-in required to use the Wolfram Demonstrations Project.)

Finally, with Election Day right around the corner, how about a dose of the mathematics of voting?

I’m a fan of this series of videos about voting theory by C.G.P. Grey. Who could resist the charm of learning about the alternative vote from a wallaby, or about gerrymandering from a weasel? Below you’ll find the first video in his series, entitled “The Problems with First Past the Post Voting Explained.” Majority rule isn’t as simple of a concept as you might think, and math can help to explain why. As can jungle animals, of course.

Thanks again for being a part of our Math Munch fun this past year. Here’s to a great second course! Bon appetit!



PS I linked to a bunch of papers in this post. After all, that’s the traditional first anniversary gift!