Tag Archives: diversity

Nautilus, The Riddler, and Brain Pickings

Welcome to this week’s Math Munch!

Sometimes math pops up in places when you aren’t even looking for it. This week I’d like to share three websites that I enjoy. What they have in common is that they all cover a wide range of subjects—astronomy, politics, pop culture—but also host some great math if you know where to look for it.

nautilusFirst up is a site called Nautilus. In their own words, “We are here to tell you about science and its endless connections to our lives.” Each month they publish articles around a theme. This month’s theme is “Heroes.” Included in Nautilus’s mission is discussing mathematics, and you can find their math articles on this page. Here are a few articles to get you started. Read about how Penrose tiles have made the leap from nonrepeating abstraction to the real world—including to kitchen items. Learn about one of math’s beautiful monsters and how it shook the foundations of calculus. Or you might be interested in learning about how a mathematician is using computers to change the way we write proofs.

riddler_4x3_defaultNext, you might think that, since the presidential election is now over, you won’t be heading to Nate Silver’s FiveThirtyEight quite as often. But do you know about the site’s column called The Riddler? Each week Oliver Roeder shares two puzzles, the newer Riddler Express and the Riddler Classic. Readers can send in their solutions, and some get featured on the website—that could be you! Here are a couple of puzzles to get you started, and you can also check out the full archive. The Puzzle of the Lonesome King asks about the chances that someone will win a prince-or-princess-for-a-day competition. Can You Win This Hot New Game Show? asks you to come up with a winning strategy for a round of Highest Number Wins. And Solve The Puzzle, Stop The Alien Invasion is just what is says on the tin.

brainpickings

The third site I’d like to point you to is Brain Pickings. It’s a wide-ranging buffet of short articles on all kinds of topics, written and curated by Maria Popova. If you search Brain Pickings for math, all kinds of great stuff will pop up. You can read about John ConwayPaul Erdős, Margaret WertheimBlaise Pascal, and more. You’ll find book recommendations, videos, history, and artwork galore. I particularly want to highlight Maria’s article about the trailblazing African American women who helped to put a man on the moon. Their story is told in the book Hidden Figures by Margot Lee Shetterly, and the feature film by the same name is coming soon to a theater near you!

I hope you find lots to dig into on these sites. Bon appetit!

Wild Maths, Ambiguous Cylinders, and 228 Women

Welcome to this week’s Math Munch!

You should definitely take some time to explore Wild Maths, a site dedicated to the creative aspects of mathematics. Wild Maths is produced by the Millennium Mathematics Project, which also makes NRICH and Plus.

squareit

I won!

One fun things you’ll find on Wild Maths is a game called Square It! You can play it with a friend or against the computer. The goal is to color dots on a square grid so that you are the first to make a square in your color. It is quite challenging! To the left you’ll find my first victory against the computer after losing the first several matches.

You’ll find lots more on Wild Maths, including an equal averages challenge, a number grid journey, and some video interviews with mathematicians Katie Steckles and Nira Chamberlain. Wild Maths also has a Showcase of work that has been submitted by their readers, much like our own Readers’ Gallery. (We love hearing from you and seeing your creations!)

Next up is a video of an amazing illusion:

Now, I am as big of a fan of squircles as anyone, but this video really threw me for a loop. The illusion just gets crazier and crazier! The illusion was designed by Kokichi Sugihara of Meiji University in Japan. It recently won second place in the Best Illusion of the Year Contest.

We are fortunate that Dave Richeson has hit it out of the park again, this time sharing both an explanation of the mathematics behind the illusion and a paper template you can use to make your own ambiguous cylinder!

PWinmathFinally this week, I’d like to share a fascinating document with you. It is a supplement to a book called Pioneering Women in American Mathematics: The Pre-1940s PhD’s by Judy Green and Jeanne LaDuke.

The supplement gives biographies of all 228 American women who earned their PhD’s in mathematics during the first four decades of the 20th century. You might enjoy checking out this page from the National Museum of American History, which describes some about the origin of the book project.

81-11284.13web

Judy Green, Jeanne LaDuke, and fifteen women who received their PhD’s in math before 1940.

I hope you will find both pleasure and inspiration in reading the stories of these pioneers in American mathematics. I have found them to be a lot of fun to read.

Bon appetit!

Web Applets, Space Fillers, and Sisters

Welcome to this week’s Math Munch!

Recently I’ve been running across tons of neat, slick math applets. I feel like they all go together. What do they have in common? Maybe you’ll be able to tell me.

First up, you can tinker with some planetary gears. Then try out these chorded polygons. And then how about some threaded lines?

plantearygears chords shapes

Ready for some more? Because with these sorts of visualizations, Dan Anderson has been on fire lately. Dan is a high school math teacher in New York state. He and his students had fifteen minutes of fame last year when they investigated whether or not Double Stuf Oreos really have double the stuf.

Here is Dan’s page on OpenProcessing. (Processing is the computer language in which Dan programs his applets.) And check out the images and gifs on Dan’s Tumblr. Here’s a sampling!

tumblr_nm56rdMlvl1uppablo1_r3_400 tumblr_noqxoi8EsC1uppablo1_400 tumblr_nolvf9dSt61uppablo1_400

Dan also coordinates Daily Desmos, which we’ve feature previously. Check out the latest periodic and “obfuscation” challenges!

That’s a chunk of math to chew on already, but we’re just getting started! Next up, check out the space-filling artwork of John Shier.

doublecircles eyes
 fish  hearts

John’s artwork places onto the canvas shapes of smaller and smaller sizes. Notice that the circles below fill in gaps, but they don’t touch each other, they way circles do in an Apollonian gasket.

circle_prog_1B_AnimeYou can learn more about John’s space-filling shapes on this page and find further details in this paper.

Thanks for making us this sweet banner, John!

Thanks for making us this sweet banner, John!

Last up this week, head to this site to watch an awesome trailer of a film about Julia Robinson. The short clip focuses on Julia’s work on Hilbert’s tenth problem. It includes interviews with a number of people who knew Julia, including her sister Constance Reid. Constance wrote extensively about mathematics and mathematicians. I’ve read her biography of Hilbert and can highly recommend it. You can read more about Julia and Constance here and here.

Julia Robinson

Julia Robinson

Julia's sister, Constance Reid

Julia’s sister, Constance Reid

Julia and Constance as young girls.

Julia and Constance as young girls.

You might enjoy visiting the site of the Julia Robinson Mathematics Festival. Check to see if a festival will be hosted in your area sometime soon, or find out how you can run one yourself!

With May wrapped up and June getting started, I hope you have a lot of math to look forward to this summer. Bon appetit!

SquareRoots, Concave States, and Sea Ice

Welcome to this week’s Math Munch!

The most epic Pi Day of the century will happen in just a few weeks: 3/14/15! I hope you’re getting ready. To help you get into the spirit, check out these quilts.

American Pi.

American Pi.

African American Pi.

African American Pi.

There’s an old joke that “pi is round, not square”—a punchline to the formula for the area of a circle. But in these quilts, we can see that pi really can be square! Each quilt shows the digits of pi in base 3. The quilts are a part of a project called SquareRoots by artist and mathematician John Sims.

John Sims.

John Sims.

There’s lots more to explore and enjoy on John’s website, including a musical interpretation of pi and some fractal trees that he has designed. John studied mathematics as an undergrad at Antioch College and has pursued graduate work at Wesleyan University. He even created a visual math course for artists when he taught at the Ringling College of Art and Design in Florida.

I enjoyed reading several articles (1, 2, 3, 4) about John and his quilts, as well as this interview with John. Here’s one of my favorite quotes from it, in response to “How do you begin a project?”

It can happen in two ways. I usually start with an object, which motivates an idea. That idea connects to other objects and so on, and, at some point, there is a convergence where idea meets form. Or sometimes I am fascinated by an object. Then I will seek to abstract the object into different spatial dimensions.

simstrees

Cellular Forest and Square Root of a Tree, by John Sims.

You can find more of John’s work on his YouTube channel. Check out this video, which features some of John’s music and an art exhibit he curated called Rhythm of Structure.

Next up: Some of our US states are nice and boxy—like Colorado. (Or is it?) Other states have very complicated, very dent-y shapes—way more complicated than the shapes we’re used to seeing in math class.

Which state is the most dent-y? How would you decide?

3fe3acace86442e7a0ddf5c7369f14dc.480x480x351

West Virginia is pretty dent-y. By driving “across” it, you can pass through many other states along the way.

The mathematical term for dent-y is “concave”. One way you might try to measure the concavity of a state is to see how far outside of the state you can get by moving in a straight line from one point in it to another. For example, you can drive straight from one place in West Virginia to another, and along the way pass through four other states. That’s pretty crazy.

But is it craziest? Is another state even more concave? That’s what this study set out to investigate. Click through to find out their results. And remember that this is just one way to measure how concave a state is. A different way of measuring might give a different answer.

Awesome animal kingdom gerrymandering video!

Awesome animal kingdom gerrymandering video!

This puzzle about the concavity of states is silly and fun, but there’s more here, too. Thinking about the denty-ness of geographic regions is very important to our democracy. After all, someone has to decide where to draw the lines. When regions and districts are carved out in a way that’s unfair to the voters and their interests, that’s called gerrymandering.

Karen Saxe

Karen Saxe.

To find out more about the process of creating congressional districts, you can listen to a talk by Karen Saxe, a math professor at Macalester College. Karen was a part of a committee that worked to draw new congressional districts in Minnesota after the 2010 US Census. (Karen speaks about compactness measures starting here.)

Recently I ran across an announcement for a conference—a conference that was all about the math of sea ice! I never grow tired of learning new and exciting ways that math connects with the world. Check out this video featuring Kenneth Golden, a leading mathematician in the study of sea ice who works at the University of Utah. I love the line from the video: “People don’t usually think about mathematics as a daring occupation.” Ken and his team show that math can take you anywhere that you can imagine.

Bon appetit!

Reflection sheet – SquareRoots, Concave States, and Sea Ice

Fields Medal, Favorite Numbers, and The Grapes of Math

Welcome to this week’s Math Munch! And, if you’re a student or teacher, welcome to a new school year!

fieldsOne of the most exciting events in the world of math happened this August– the awarding of the Fields Medal! This award honors young mathematicians who have already done awesome mathematical work and who show great promise for the future. It also only happens every four years, at the beginning of an important math conference called the International Congress of Mathematicians, so it’s a very special occasion when it does!

 

Maryam Mirzakhani, first woman ever to win a Fields Medal

Maryam Mirzakhani, first woman ever to win a Fields Medal

This year’s award was even more special than usual, though. Not only were there four winners (more than the usual two or three), but one of the winners was a woman!

Now, if you’re like me, you probably heard about the Fields Medal and thought, “There’s no way I’ll understand the math that these Field Medalists do.” But this couldn’t be more wrong! Thanks to these great articles from Quanta Magazine, you can learn a lot about the super-interesting math that the Fields Medalists study– and why they study it.

MB_thumb-125x125

Manjul Bhargava

One thing you’ll immediately notice is that each Fields Medalist has non-math interests that inspire their mathematical work. Take Manjul, for instance. When he was a kid, his grandfather introduced him to Sanskrit poetry. He was fascinated by the patterns in the rhythms of the poems, and the number patterns that he found inspired him to study the mathematics of number patterns– number theory!

But, don’t just take my word for it– you can read all about Manjul and the others in these great articles! And did I mention that they come with videos about each mathematician? 

Want to read more about this year’s Fields Medallists? Check out Alex Bellos’s article in The Guardian. Which brings me to…

download… What’s your favorite number? Is it 7? If it is, then you’re in good company! Alex polled more than 30,000 people about their favorite number, and the most popular was 7. But why? What’s so special about 7? Here’s why Alex thinks 7 is such a favorite:

grapes-of-mathWhy do you like your favorite number? People gave Alex all kinds of different reasons. One woman said about 3, her favorite number, “3 wishes. On the count of 3. 3 little pigs… great triumvirates!” Alex made these questions the topic of the first chapter of his new book, The Grapes of Math. (Get the reference?) In this book, Alex shares many curious ways that math appears in our world. Did you know that a weird pattern in numbers can be used to catch criminals? Or that the Game of Life, a simple computer program, shares surprisingly many characteristics with real life? These are only a few of the hundreds of topics Alex covers in his book. Whether you’re a math whiz or a newbie, you’ll learn something new on every page.

Alex currently writes about math for The Guardian in a blog called, “Alex’s Adventures in Numberland”— but he also loves and writes about soccer (or futbol, as it’s called in his native Brazil)! He even wrote a few articles for his blog about math and soccer. 

Do you have any questions for Alex? (About math, soccer, or their intersection?) Write them here and you might find them featured in our interview with Alex!

Good writing about math is hard to find. If you’ve ever picked up a standard math textbook, you’ll know what I mean. But reading something fascinating, that grabs your interest from the first page and leads you through the most complex ideas like they’re as natural as anything you’ve observed, is a great way to learn. The Grapes of Math and “Alex’s Adventures in Numberland” do just that. Give them a go!

Bon appetit!

 

Girls’ Angle, Spiral Tilings, and Coins

Welcome to this week’s Math Munch!

GirlsAngleCoverGirls’ Angle is a math club for girls. Since 2007 it has helped girls to grow their love of math through classes, events, mentorship, and a vibrant mathematical community. Girls’ Angle is based in Cambridge, Massachusetts, but its ideas and resources reach around the world through the amazing power of the internet. (And don’t you worry, gentlemen—there’s plenty for you to enjoy on the site as well.)

Amazingly, the site contains an archive of every issue of Girls’ Angle Bulletin, a wonderful bimonthly journal to “foster and nurture girls’ interest in mathematics.” In their most recent issue, you’ll find an interview with mathematician Karen E. Smith, along with several articles and puzzles about balance points of shapes.

There’s so much to dig into at Girls’ Angle! In addition to the Bulletins, there are two pages of mathematical videos. The first page shares a host of videos of women in mathematics sharing a piece of math that excited them when they were young. The most recent one is by Bridget Tenner, who shares about Pick’s Theorem. The second page includes several videos produced by Girls’ Angle, including this one called “Summer Vacation”.

Girls’ Angle can even help you buy a math book that you’d like, if you can’t afford it. For so many reasons, I hope you’ll find some time to explore the Girls’ Angle site over your summer break. (And while you’ve got your explorer’s hat on, maybe you’ll tour around Math Munch, too!)

I did a Google search recently for “regular tilings.” I needed a few quick pictures of the usual triangle, square, and hexagon tilings for a presentation I was making. As I scrolled along, this image jumped out at me:

hexspiral

What is that?! It certainly is a tiling, and all the tiles are the “same”—even if they are different sizes. Neat!

Clicking on the image, I found myself transported to a page all about spiral tilings at the Geometry Junkyard. The site is a whole heap of geometrical odds and ends—and a place that I’ve stumbled across many times over the years. Here are a few places to get started. I’m sure you’ll enjoy poking around the site to find some favorite “junk” of your own.

Spirals

Spirals

Circles and spheres

Circles & spheres

Coloring

Coloring

Last up this week, you may have seen this coin puzzle before. Can you make the triangle point downwards by moving just three pennies?triangleflip

There are lots of variants of this puzzle. You can find some in an online puzzle game called Coins. In the game you have to make arrangements of coins, but the twist is that you can only move a coin to a spot where would it touch at least two other coins. I’m enjoying playing Coins—give it a try!

I solved this Coins puzzle in four moves. Can you? Can you do better?

I solved this Coins puzzle in four moves. Can you? Can you do better?

That’s it for this week’s Math Munch. Bon appetit!

 

Numenko, Turning Square, and Toilet Paper

Welcome to this week’s Math Munch!

Have you ever played Scrabble or Bananagrams? Can you imagine versions of these games that would use numbers instead of letters?

Meet Tom Lennett, who imagined them and then made them!

Tom playing Numenko with his grandkids.

Tom playing Numenko with his grandkids.

Numemko is a crossnumber game. Players build up number sentences, like 4×3+8=20, that cross each other like in a crossword puzzle. There is both a board game version of Numenko (like Scrabble) and a bag game version (like Banagrams). Tom invented the board game years ago to help his daughter get over her fear of math. He more recently invented the bag game for his grandkids because they wanted a game to play where they didn’t have to wait their turn!

The Multichoice tile.

The Multichoice tile.

One important feature of Numenko is the Multichoice tile. Can you see how it can represent addition, subtraction, multiplication, division, or equality?

How would you like to have a Numenko set of your own? Well, guess what—Tom holds weekly Numenko puzzle competitions with prizes! You can see the current puzzle on this page, as well as the rules. Here’s the puzzle at the time of this post—the week of November 3, 2013.

Can you replace the Multichoice tiles to create a true number sentence?

Challenge: replace the Multichoice tiles to create a true number sentence.

I can assure you that it’s possible to win Tom’s competitions, because one of my students and I won Competition 3! I played my first games of Numenko today and really enjoyed them. I also tried making some Numenko puzzles of my own; see the sheet at the bottom of this post to see some of them.

Tom in 1972.

Tom in 1972.

In emailing with Tom I’ve found that he’s had a really interesting life. He grew up in Scotland and left school before he turned 15. He’s been a football-stitcher, a barber, a soldier, a distribution manager, a paintball site operator, a horticulturist, a property developer, and more. And, of course, also a game developer!

Do you have a question you’d like to ask Tom? Send it in through the form below, and we’ll try to include it in our upcoming Q&A!

leveledit

The level editor.

Say, do you like Bloxorz? I sure do—it’s one of my favorite games! So imagine my delight when I discovered that a fan of the game—who goes by the handle Jz Pan—created an extension of it where you can make your own levels. Awesome, right? It’s called Turning Square, and you can download it here.

(You’ll need to uncompress the file after downloading, then open TurningSquare.exe. This is a little more involved than what’s usual here on Math Munch, but I promise it’s worth it! Also, Turning Square has only been developed for PC. Sorry, Mac fans.)

The level!

The level I made!

But wait, there’s more! Turning Square also introduces new elements to Bloxorz, like slippery ice and pyramids you can trip over. It has a random level generator that can challenge you with different levels of difficulty. Finally, Turning Square includes a level solver—it can determine whether a level that you create is possible or not and how many steps it takes to complete.

Jz Pan is from China and is now a graduate student at the Chinese Academy of Sciences, majoring in mathematics and studying number theory. Jz Pan made Turning Square in high school, back in 2008.

Jz Pan has agreed to answer some of your questions! Use the form below to send us some.

If you make a level in Turning Square that you really like, email us the .box file and we can share it with everyone through our new Readers’ Gallery! Here is my level from above, if you want to try it out.

Jz Pan has also worked on an even more ambitious extension of Bloxorz called Turning Polyhedron. The goal is the same, but like the game Dublox, the shape that you maneuver around is different. Turning Polyhderon features several different shapes. Check out this video of it being played with a u-polyhedron!

And if you think that’s wild, check out this video with multiple moving blocks!

Last up this week, have you ever heard that it’s impossible to fold a piece of paper in half more than eight times? Or maybe it’s seven…? Either way, it’s a “fact” that seems to be common knowledge, and it sure seems like it’s true when you try to fold up a standard sheet of paper—or even a jumbo sheet of paper. The stack sure gets thick quickly!

Britney Gallivan and her 11th fold.

Britney and her 11th fold.

Well, here’s a great story about a teenager who decided to debunk this “fact” with the help of some math and some VERY big rolls of toilet paper. Her name is Britney Gallivan. Back in 2001, when she was a junior in high school, Britney figured out a formula for how much paper she’d need in order to fold it in half twelve times. Then she got that amount of paper and actually did it!

Due to her work, Britney has a citation in MathWorld’s article on folding and even her own Wikipedia article. After high school, Britney went on to UC Berkeley where she majored in Environmental Science. I’m trying to get in touch with Britney for an interview—if you have a question for her, hold onto it, and I’ll keep you posted!

EDIT: I got in touch with Britney, and she’s going to do an interview!

A diagram that illustrates how Britney derived her equation.

A diagram that illustrates how Britney derived her equation.

The best place to read more about Britney’s story in this article at pomonahistorical.org—the historical website of Britney’s hometown. Britney’s story shows that even when everyone else says that something’s impossible, that doesn’t mean you can’t be the one to do it. Awesome.

I hope you enjoy trying some Numenko puzzles, tinkering with Turning Square, and reading about Britney’s toilet paper adventure.

Bon appetit!

PS Want to see a video of some toilet-paper folding? Check out the very first “family math” video by Mike Lawler and his kids.

Reflection Sheet – Numenko, Turning Square, and Toilet Paper