Tag Archives: polyominoes

Solomon Golomb, Rulers, and 52 Master Pieces

Welcome to this week’s Math Munch.

I was saddened to learn this week of the passing of Solomon Golomb.

Solomon Golomb.

Solomon Golomb.

Can you imagine the world without Tetris? What about the world without GPS or cell phones?

Here at Math Munch we are big fans of pentominoes and polyominoes—we’ve written about them often and enjoy sharing them and tinkering with them. While collections of glued-together squares have been around since ancient times, Solomon invented the term “polyominoes” in 1953, investigated them, wrote about them—including this book—and popularized them with puzzle enthusiasts. But one of Solomon’s outstanding qualities as a mathematician is that he pursued a range of projects that blurred the easy and often-used distinction between “pure” and “applied” mathematics. While polyominoes might seem like just a cute plaything, Solomon’s work with discrete structures helped to pave the way for our digital world. Solomon compiled the first book on digital communications and his work led to such technologies as radio telescopes. You can hear him talk about the applications that came from his work and more in this video:

Here is another video, one that surveys Solomon’s work and life. It’s fast-paced and charming and features Solomon in a USC Trojan football uniform! Here is a wonderful short biography of Solomon written by Elwyn Berlekamp. And how about a tutorial on a 16-bit Fibonacci linear feedback shift register—which Solomon mentions as the work he’s most proud of—in Minecraft!

Another kind of mathematical object that Solomon invented is a Golomb ruler. If you think about it, an ordinary 12-inch ruler is kind of inefficient. I mean, do we really need all of those markings? It seems like we could just do away with the 7″ mark, since if we wanted to measure something 7 inches long, we could just measure from the 1″ mark to the 8″ mark. (Or from 2″ to 9″.) So what would happen if we got rid of redundancies of this kind? How many marks do you actually need in order to measure every length from 1″ to 12″?

An optimal Golomb ruler of order 4.

An optimal Golomb ruler of order 4.

Portrait of Solomon by Ken Knowlton.

Portrait of Solomon by Ken Knowlton.

I was pleased to find that there’s actually a distributed computing project at distributed.net to help find new Golomb Rulers, just like the GIMPS project to find new Mersenne primes. It’s called OGR for “Optimal Golomb Ruler.” Maybe signing up to participate would be a nice way to honor Solomon’s memory. It’s hard to know what to do when someone passionate and talented and inspiring dies. Impossible, even. We can hope, though, to keep a great person’s memory and spirit alive and to help continue their good work. Maybe this week you’ll share a pentomino puzzle with a friend, or check out the sequences on the OEIS that have Solomon’s name attached to them, or host a Tetris or Blokus party—whatever you’re moved to do.

Thinking about Golomb rulers got me to wondering about what other kinds of nifty rulers might exist. Not long ago, at Gathering for Gardner, Matt Parker spoke about a kind of ruler that foresters use to measure the diameter of tree. Now, that sounds like quite the trick—seeing how the diameter is inside of the tree! But the ruler has a clever work-around: marking things off in multiples of pi! You can read more about this kind of ruler in a blog post by Dave Richeson. I love how Dave got inspired and took this “roundabout ruler” idea to the next level to make rulers that can measure area and volume as well. Generalizing—it’s what mathematicians do!

 img_3975  measuringtapes1

I was also intrigued by an image that popped up as I was poking around for interesting rulers. It’s called a seam allowance curve ruler. Some patterns for clothing don’t have a little extra material planned out around the edges so that the clothes can be sewn up. (Bummer, right?) To pad the edges of the pattern is easy along straight parts, but what about curved parts like armholes? Wouldn’t it be nice to have a curved ruler? Ta-da!

A seam allowance curve ruler.

A seam allowance curve ruler.

David Cohen

David Cohen

Speaking of Gathering for Gardner: it was announced recently that G4G is helping to sponsor an online puzzle challenge called 52 Master Pieces. It’s an “armchair puzzle hunt” created by David Cohen, a physician in Atlanta. It will all happen online and it’s free to participate. There will be lots of puzzle to solve, and each one is built around the theme of a “master” of some occupation, like an architect or a physician. Here are a couple of examples:

MedicinePuzzle
 ArchitectPuzzle

Notice that both of these puzzles involve pentominoes!

The official start date to the contest hasn’t been announced yet, but you can get a sneak peek of the site—for a price! What’s the price, you ask? You have to solve a puzzle, of course! Actually, you have your choice of two, and each one is a maze. Which one will you pick to solve? Head on over and give it a go!

Maze A

Maze A

Maze B

Maze B

And one last thing before I go: if you’re intrigued by that medicine puzzle, you might really like checking out 100 different ways this shape can be 1/4 shaded. They were designed by David Butler, who teaches in the Maths Learning Centre at the University of Adelaide. Which one do you like best? Can you figure out why each one is a quarter shaded? It’s like art and a puzzle all at once! Can you come up with some quarter-shaded creations of your own? If you do, send them our way! We’d love to see them.

Six ways to quarter the cross pentomino. 94 more await you!

Eight ways to quarter the cross pentomino. 92 more await you!

Bon appetit!

Tangent Spaces, Transplant Matches, and Golyhedra

Welcome to this week’s Math Munch!

You might remember our post on Tilman Zitzmann’s project called Geometry Daily. If you haven’t seen it before, go check it out now! It will help you to appreciate Lawrie Cape’s work, which both celebrates and extends the Geometry Daily project. Lawrie’s project is called Tangent Spaces. He makes Tilman’s geometry sketches move!

A box of rays, by Tilman

A box of rays, by Tilman

A box of rays, by Lawrie.

A box of rays, by Lawrie

409 66 498

Not only do Lawrie’s sketches move, they’re also interactive—you can click on them, and they’ll move in response. All kinds of great mathematical questions can come up when you set a diagram in motion. For instance, I’m wondering what moon patterns are possible to make by dragging my mouse around—and if any are impossible. What questions come up for you as you browse Tangent Spaces?

Next up, Dorry Segev and Sommer Gentry are a doctor and a mathematician. They collaborated on a new system to help sick people get kidney transplants. They are also dance partners and husband and wife. This video shares their amazing, mathematical, and very human story.

Dorry and Sommer’s work involves building graphs, kind of like the game that Paul posted about last week. Thinking about the two of them together has been fun for me. You can read more about the life-saving power of Kidney Paired Donation on optimizedmatch.com.

Last up this week, here’s some very fresh math—discovered in the last 24 hours! Joe O’Rourke is one of my favorite mathematicians. (previously) Joe recently asked whether a golyhedron exists. What’s a golyhedron? It’s the 3D version of a golygon. What’s a golygon? Glad you asked. It’s a grid polygon that has side lengths that grow one by one, from 1 up to some number. Here, a diagram will help:

The smallest golygon. It has sides of lengths 1 through 8.

The smallest golygon. It has sides of lengths 1 through 8.

A golyhedron is like this, but in 3D: a grid shape that has one face of each area from 1 up to some number. After tinkering around some with this new shape idea, Joe conjectured that no golyhedra exist. It’s kind of like coming up with the idea of a unicorn, but then deciding that there aren’t any real ones. But Joseph wasn’t sure, so he shared his golyhedron shape idea on the internet at MathOverflow. Adam P. Goucher read the post, and decided to build a golyhedron himself.

And he found one!

The first ever golyhedron, by Adam P. Goucher

The first ever golyhedron, by Adam P. Goucher

Adam wrote all about the process of discovering his golyhedron in this blog post. I recommend it highly.

And the story and the math don’t stop there! New questions arise—is this the smallest golyhedron? Are there types of sequences of face sizes that can’t be constructed—for instance, what about a sequence of odd numbers? Curious and creative people, new discoveries, and new questions—that’s how math grows.

If this story was up your alley, you might enjoy checking out the story of holyhedra in this previous post.

Bon appetit!

Polyominoes, Clock Calculator, and Nine Bells

Welcome to this week’s Math Munch!

pentominoes!The first thing I have to share with you comes with a story. One day several years ago, I discovered these cool little shapes made of five squares. Maybe you’ve seen these guys before, but I’d never thought about how many different shapes I could make out of five squares. I was trying to decide if I had all the possible shapes made with five squares and what to call them, when along came Justin. He said, “Oh yeah, pentominoes. There’s so much stuff about those.”

Justin proceeded to show me that I wasn’t alone in discovering pentominoes – or any of their cousins, the polyominoes, made of any number of squares. I spent four happy years learning lots of things about polyominoes. Until one day… one of my students asked an unexpected question. Why squares? What if we used triangles? Or hexagons?

pentahexesWe drew what we called polyhexes (using hexagons) and polygles (using triangles). We were so excited about our discoveries! But were we alone in discovering them? I thought so, until…

whoa square

A square made with all polyominoes up to heptominoes (seven), involving as many internal squares as possible.

… I found the Poly Pages. This is the polyform site to end all polyform sites. You’ll find information about all kinds of polyforms — whether it be a run-of-the-mill polyomino or an exotic polybolo — on this site. Want to know how many polyominoes have a perimeter of 14? You can find the answer here. Were you wondering if polyominoes made from half-squares are interesting? Read all about polyares.

I’m so excited to have found this site. Even though I have to share credit for my discovery with other people, now I can use my new knowledge to ask even more interesting questions.

Next up, check out this clock arithmetic calculator. This calculator does addition, subtraction, multiplication, and division, and even more exotic things like square roots, on a clock.

clock calculatorWhat does that mean? Well, a clock only uses the whole numbers 1 through 12. Saying “15 o’clock” doesn’t make a lot of sense (unless you use military time) – but you can figure out what time “15 o’clock” is by determining how much more 15 is than 12. 15 o’clock is 3 hours after 12 – so 15 o’clock is actually 3 o’clock. You can use a similar process to figure out the value of any positive or negative counting number on a 12 clock, or on a clock of any size. This process (called modular arithmetic) can get a bit time consuming (pun time!) – so, give this clock calculator a try!

Finally, here is some wonderful mathemusic by composer Tom Johnson. Tom writes music with underlying mathematics. In this piece (which is almost a dance as well as a piece of music), Tom explores the possible paths between nine bells, hung in a three-by-three square. I think this is an example of mathematical art at its best – it’s interesting both mathematically and artistically. Observe him traveling all of the different paths while listening to the way he uses rhythm and pauses between the phrases to shape the music. Enjoy!

Bon appetit!