Tag Archives: applied math

Solomon Golomb, Rulers, and 52 Master Pieces

Welcome to this week’s Math Munch.

I was saddened to learn this week of the passing of Solomon Golomb.

Solomon Golomb.

Solomon Golomb.

Can you imagine the world without Tetris? What about the world without GPS or cell phones?

Here at Math Munch we are big fans of pentominoes and polyominoes—we’ve written about them often and enjoy sharing them and tinkering with them. While collections of glued-together squares have been around since ancient times, Solomon invented the term “polyominoes” in 1953, investigated them, wrote about them—including this book—and popularized them with puzzle enthusiasts. But one of Solomon’s outstanding qualities as a mathematician is that he pursued a range of projects that blurred the easy and often-used distinction between “pure” and “applied” mathematics. While polyominoes might seem like just a cute plaything, Solomon’s work with discrete structures helped to pave the way for our digital world. Solomon compiled the first book on digital communications and his work led to such technologies as radio telescopes. You can hear him talk about the applications that came from his work and more in this video:

Here is another video, one that surveys Solomon’s work and life. It’s fast-paced and charming and features Solomon in a USC Trojan football uniform! Here is a wonderful short biography of Solomon written by Elwyn Berlekamp. And how about a tutorial on a 16-bit Fibonacci linear feedback shift register—which Solomon mentions as the work he’s most proud of—in Minecraft!

Another kind of mathematical object that Solomon invented is a Golomb ruler. If you think about it, an ordinary 12-inch ruler is kind of inefficient. I mean, do we really need all of those markings? It seems like we could just do away with the 7″ mark, since if we wanted to measure something 7 inches long, we could just measure from the 1″ mark to the 8″ mark. (Or from 2″ to 9″.) So what would happen if we got rid of redundancies of this kind? How many marks do you actually need in order to measure every length from 1″ to 12″?

An optimal Golomb ruler of order 4.

An optimal Golomb ruler of order 4.

Portrait of Solomon by Ken Knowlton.

Portrait of Solomon by Ken Knowlton.

I was pleased to find that there’s actually a distributed computing project at distributed.net to help find new Golomb Rulers, just like the GIMPS project to find new Mersenne primes. It’s called OGR for “Optimal Golomb Ruler.” Maybe signing up to participate would be a nice way to honor Solomon’s memory. It’s hard to know what to do when someone passionate and talented and inspiring dies. Impossible, even. We can hope, though, to keep a great person’s memory and spirit alive and to help continue their good work. Maybe this week you’ll share a pentomino puzzle with a friend, or check out the sequences on the OEIS that have Solomon’s name attached to them, or host a Tetris or Blokus party—whatever you’re moved to do.

Thinking about Golomb rulers got me to wondering about what other kinds of nifty rulers might exist. Not long ago, at Gathering for Gardner, Matt Parker spoke about a kind of ruler that foresters use to measure the diameter of tree. Now, that sounds like quite the trick—seeing how the diameter is inside of the tree! But the ruler has a clever work-around: marking things off in multiples of pi! You can read more about this kind of ruler in a blog post by Dave Richeson. I love how Dave got inspired and took this “roundabout ruler” idea to the next level to make rulers that can measure area and volume as well. Generalizing—it’s what mathematicians do!

 img_3975  measuringtapes1

I was also intrigued by an image that popped up as I was poking around for interesting rulers. It’s called a seam allowance curve ruler. Some patterns for clothing don’t have a little extra material planned out around the edges so that the clothes can be sewn up. (Bummer, right?) To pad the edges of the pattern is easy along straight parts, but what about curved parts like armholes? Wouldn’t it be nice to have a curved ruler? Ta-da!

A seam allowance curve ruler.

A seam allowance curve ruler.

David Cohen

David Cohen

Speaking of Gathering for Gardner: it was announced recently that G4G is helping to sponsor an online puzzle challenge called 52 Master Pieces. It’s an “armchair puzzle hunt” created by David Cohen, a physician in Atlanta. It will all happen online and it’s free to participate. There will be lots of puzzle to solve, and each one is built around the theme of a “master” of some occupation, like an architect or a physician. Here are a couple of examples:

MedicinePuzzle
 ArchitectPuzzle

Notice that both of these puzzles involve pentominoes!

The official start date to the contest hasn’t been announced yet, but you can get a sneak peek of the site—for a price! What’s the price, you ask? You have to solve a puzzle, of course! Actually, you have your choice of two, and each one is a maze. Which one will you pick to solve? Head on over and give it a go!

Maze A

Maze A

Maze B

Maze B

And one last thing before I go: if you’re intrigued by that medicine puzzle, you might really like checking out 100 different ways this shape can be 1/4 shaded. They were designed by David Butler, who teaches in the Maths Learning Centre at the University of Adelaide. Which one do you like best? Can you figure out why each one is a quarter shaded? It’s like art and a puzzle all at once! Can you come up with some quarter-shaded creations of your own? If you do, send them our way! We’d love to see them.

Six ways to quarter the cross pentomino. 94 more await you!

Eight ways to quarter the cross pentomino. 92 more await you!

Bon appetit!

Continents, Math Explorers’ Club, and “I use math for…”

Welcome to this week’s Math Munch!

stevestrogatz

Steven Strogatz.

All of our munches this week come from the recent tweets of mathematician, author, and friend of the blog Steven Strogatz. Steve works at Cornell University as an applied mathematician, tackling questions like “If people shared taxis with strangers, how much money could be saved?” and “What caused London’s Millennium Bridge to wobble on its opening day?”

On top of his research, Steve is great at sharing math with others. (This week I learned one great piece of math from him, and then another, and suddenly there was a very clear theme to my post!) Steve has written for the New York Times and was recently awarded the Lewis Thomas Prize as someone “whose voice and vision can tell us about science’s aesthetic and philosophical dimensions, providing not merely new information but cause for reflection, even revelation.”

NMFLogo_Horiz_RGB_300DPI2This Saturday, Steve will be presenting at the first-ever National Math Festival. The free and fun main event is at the Smithsonian in Washington, DC, and there are related math events all around the country this weekend. Check and see if there’s one near you!

Here are a few pieces of math that Steve liked recently. I liked them as well, and I hope you will, too.

First up, check out this lovely image:

tesselation1-blog480It appeared on Numberplay and was created by Hamid Naderi Yeganeh, a student at University of Qom in Iran. Look at the way the smaller and smaller tiles fit together to make the design. It’s sort of like a rep-tile, or this scaly spiral. And do those shapes look familiar? Hamid was inspired by the shapes of the continents of Africa and South America (if you catch my continental drift). Maybe you can create your own Pangaea-inspired tiling.

If you think that’s cool, you should definitely check out Numberplay, where there’s a new math puzzle to enjoy each week!

Next, up check out the Math Explorers’ Club, a collection of great math activities for people of all ages. The Club is a project of Cornell University’s math department, where Steve teaches.

The first item every sold on the auction site eBay. Click through for the story!

The first item every sold on the auction site eBay. Click through for the story!

One of the bits of math that jumped out to me was this page about auctions. There’s so much strategy and scheming that’s involved in auctions! I remember being blown away when I first learned about Vickrey auctions, where the winner pays not what they bid but what the second-highest bidder did!

If auctions aren’t your thing, there’s lots more great math to browse at the Math Explorer’s Club—everything from chaos and fractals to error correcting codes. Even Ehrenfeucht-Fraïssé games, which are brand-new to me!

And finally this week: have you ever wondered “What will I ever use math for?” Well, SIAM—the Society for Industrial and Applied Mathematics—has just the video for you. They asked people attending one of their meetings to finish the sentence, “I use math for…”. Here are 32 of their answers in just 60 seconds.

Thanks for sharing all this great math, Steve! And bon appetit, everyone!

Fields Medal, Favorite Numbers, and The Grapes of Math

Welcome to this week’s Math Munch! And, if you’re a student or teacher, welcome to a new school year!

fieldsOne of the most exciting events in the world of math happened this August– the awarding of the Fields Medal! This award honors young mathematicians who have already done awesome mathematical work and who show great promise for the future. It also only happens every four years, at the beginning of an important math conference called the International Congress of Mathematicians, so it’s a very special occasion when it does!

 

Maryam Mirzakhani, first woman ever to win a Fields Medal

Maryam Mirzakhani, first woman ever to win a Fields Medal

This year’s award was even more special than usual, though. Not only were there four winners (more than the usual two or three), but one of the winners was a woman!

Now, if you’re like me, you probably heard about the Fields Medal and thought, “There’s no way I’ll understand the math that these Field Medalists do.” But this couldn’t be more wrong! Thanks to these great articles from Quanta Magazine, you can learn a lot about the super-interesting math that the Fields Medalists study– and why they study it.

MB_thumb-125x125

Manjul Bhargava

One thing you’ll immediately notice is that each Fields Medalist has non-math interests that inspire their mathematical work. Take Manjul, for instance. When he was a kid, his grandfather introduced him to Sanskrit poetry. He was fascinated by the patterns in the rhythms of the poems, and the number patterns that he found inspired him to study the mathematics of number patterns– number theory!

But, don’t just take my word for it– you can read all about Manjul and the others in these great articles! And did I mention that they come with videos about each mathematician? 

Want to read more about this year’s Fields Medallists? Check out Alex Bellos’s article in The Guardian. Which brings me to…

download… What’s your favorite number? Is it 7? If it is, then you’re in good company! Alex polled more than 30,000 people about their favorite number, and the most popular was 7. But why? What’s so special about 7? Here’s why Alex thinks 7 is such a favorite:

grapes-of-mathWhy do you like your favorite number? People gave Alex all kinds of different reasons. One woman said about 3, her favorite number, “3 wishes. On the count of 3. 3 little pigs… great triumvirates!” Alex made these questions the topic of the first chapter of his new book, The Grapes of Math. (Get the reference?) In this book, Alex shares many curious ways that math appears in our world. Did you know that a weird pattern in numbers can be used to catch criminals? Or that the Game of Life, a simple computer program, shares surprisingly many characteristics with real life? These are only a few of the hundreds of topics Alex covers in his book. Whether you’re a math whiz or a newbie, you’ll learn something new on every page.

Alex currently writes about math for The Guardian in a blog called, “Alex’s Adventures in Numberland”— but he also loves and writes about soccer (or futbol, as it’s called in his native Brazil)! He even wrote a few articles for his blog about math and soccer. 

Do you have any questions for Alex? (About math, soccer, or their intersection?) Write them here and you might find them featured in our interview with Alex!

Good writing about math is hard to find. If you’ve ever picked up a standard math textbook, you’ll know what I mean. But reading something fascinating, that grabs your interest from the first page and leads you through the most complex ideas like they’re as natural as anything you’ve observed, is a great way to learn. The Grapes of Math and “Alex’s Adventures in Numberland” do just that. Give them a go!

Bon appetit!

 

The Numbers Project, Epidemics, and Cut ‘n Slide

Welcome to this week’s Math Munch!

It’s an end-of-the-year group post!

Brandon Todd WilsonPaul: This week I found Brandon Todd Wilson, a graphic artist who lives in Kansas City. He started a new and ambitious project. He wants to make a design for each of the numbers 0 through 365, making a new one each day of the year. That’s tough, but he’s done some amazing things so far. Check them out over at the numbers project. I’m amazed by the sneaky, clever ways he comes up with to showcase the numbers. Can you tell what numbers these three are below? Click to find out.

40 Screen Shot 2013-06-07 at 12.22.20 AM 118

Maybe you could try a numeric design of your own. Perhaps for your favorite number or your birthday. If you make something your proud of, email us at mathmunchteam@gmail.com, and we could feature your work on Math Munch!

[Here are some numeric creations inspired by Brandon’s!]

ninaAnna: Next up, it’s probably the end of the school year for most of you readers out there. Our school year is wrapping up, too. It’s sad, but also exciting, because we’re looking forward to what comes in the future. Recently, some of my students, looking to their futures, have been wondering what many students wonder: If I like math, what are some things I can do with it after I leave school? (We’ve posted about this question before – check out this post on the site We Use Math and any of the interviews on our Q&A page.) We here at Math Munch had the honor last week to meet an awesome woman who uses math all the time in her work as a scientist – Nina Fefferman!

green_virus_tNina works mainly as a biologist at Rutgers University in New Jersey researching all kinds of cool and interesting things relating to epidemiology, or the study of infectious diseases and how they spread into epidemics in groups of people. How does she use math? In everything! Since dealing with infectious diseases is best done before they become epidemics, scientists like Nina make mathematical models to predict how a disease will spread before it hits. These models are really important for governments and hospitals, who use them to figure out how they can prepare for possible epidemics.

Nina loves math and her work – and you can hear all about it in this TEDx talk she did in 2010.

Justin: Finally, check out this short video by Sander Huisman, of mathematical pasta fame:

Sander has some more great videos, too. The shape that Sander’s cut and slide pattern gets closer and closer to is called the twindragon. It’s related to the more famous dragon fractal. Notice how the area of the shape stays the same throughout the video. Thanks to the kind folks at math.stackexchange for helping me to identify this fractal so quickly!

An earlier stage and a later stage of my cut & slide exploration.

An earlier stage and a later stage of my cut & slide exploration.

In searching about this geometry idea of “cut and slide”, I ran across some great stuff. One thing I found was this neat applet by Frederik Vanhoutte. (Warning: JAVA required.) Frederik is a med­ical radi­a­tion physi­cist who lives in Belgium and who likes to make wonderful graphics in his spare time. Frederik has shared many of these on his site—check out his portfolio.

On his About page, Frederik says this about why he makes his generative graphics:

“When rain hits the wind­screen, I see tracks alpha par­ti­cles trace in cells. When I pull the plug in the bath tub, I stay to watch the lit­tle whirlpool. When I sit at the kitchen table, I play with the glasses to see the caus­tics. At a can­dle light din­ner, I stare into the flame. Sometimes at night, I find myself behind the com­puter. When I finally blink, a mess of code is draw­ing ran­dom struc­tures on the screen. I spend the rest of the night staring.”

Bon appetit!

Mathematical Impressions, Modular Origami, and the Tenth Dimension

Welcome to this week’s Math Munch!

First up, check out the latest video in George Hart‘s series called “Mathematical Impressions.”  George has been making videos for “Mathematical Impressions,” which is sponsored by the Simons Foundation, since summer, when he made his video debut – so there are many videos to watch!  Here’s his newest video, called, “Attesting to Atoms,” about how the geometric structure of crystals gives clues to the existence of atoms.  (Click on the picture below to watch the video.)

Atoms video

I love how this video shows a real way in which knowledge of mathematics – which can seem very abstract at times – can help us to understand the structure of the world, which is very concrete.  In this second video, one of my favorites, George talks about the reverse of that – allowing our knowledge of something concrete to help us understand abstract mathematics.  This video is called, “Knot Possible.”  (Again, click on the picture to watch the video!)

Knot video

I could have used these words of wisdom from George when I was thinking about the problem he poses in this video: “Don’t let your knowledge of mathematics artificially limit what you think is physically possible.  Quite to the contrary!  Mathematics is a tool which can empower us to do amazing things that no one has ever done before.”  Well said, George!

sierpinski-tetrahedron-tri-2Speaking of using mathematics to do and make amazing things, check out this website of modular origami models and patterns!

This site was put together by Michal Kosmulski, who lives in Poland and works in information technology.  In addition, however, he folds these amazing modular origami polyhedra, fractals, and other awesome mathematical objects!  Michal’s site is full of pictures of his modular origami creations and links to patterns for how to make them yourself as well as information about the mathematics behind the objects.  He has also included some useful tips on how to make the more challenging shapes.

fit-five-intersecting-tetrahedra-60deg-2One of my favorites is the object to the left, “Five Intersecting Tetrahedra.”  I think that this structure is both beautiful and very interesting.  It can be made by intersecting five tetrahedra, or triangular-based pyramids, as shown, or by making a stellation of an icosahedron.  What does that mean?  Well, an icosahedron is a polyhedron with twenty equilateral triangular faces.  To stellate a polyhedron, you extend some element of the polyhedron – such as the faces or edges – in a symmetric way until they meet to form a new polyhedron.  There are 59 possible stellations of the icosahedron!  Michal has models of several of them, including the Five Intersecting Tetrahedra and the great stellated icosahedron shown below on the left.  The figure on the right is called “Cube.”

spiked-dodecahedron-ssitcube-oxi

Finally, all the talking about dimensions that we’ve been doing for the past few weeks reminded me of my favorite video about higher dimensions.  It’s called, “Imagining the Tenth Dimension,” and it shows a way of thinking about dimensions, from the zero dimension all the way up to the tenth.  I can watch this video again and again and still find it mind-blowing and fascinating.

Bon appetit!

Ghost Diagrams, Three New Games, and Scrabble Tiles

Welcome to this week’s Math Munch!

gd0

A ghost diagram composed of two different tiles.

An organism is more than the sum of its organs. When the organs are fitted together, the organism becomes something more. This surprising something more we call “spirit” or “ghost”. Ghost Diagrams finds the ghosts implicit in simple sets of tiles.

So writes Paul Harrison, creator of the amazing Ghost Diagram applet. Paul creates all kinds of free software and has his Ph.D. in Computer Science. I found his Ghost Diagram applet through this huge list of links about generative art.

A '111-' tile connected to a '1aA1' tile.

A ‘111-‘ tile connected to a ‘1aA1’ tile.

Given a collection of tile types, the applet tries to find a way to connect them so that no tile has any loose ends. A tile type is specified through a string of letters, numbers, and dashes. Each of these specifies an edge. You can think of a four-character tile as being a modified square and a six-character tile as being a modified hexagon. Two tiles can connect if they have edges that match. Number edges match with themselves—1 matches with 1—while letter edges match with the same letter with opposite capitalization—a matches with A.

It’s amazing the variety of patterns that can emerge out of a few simple tiles. Here are a couple of ghost diagrams that I created. You can click them to see live versions in the applet. There are many other nice ghost diagrams that Paul has compiled on the site. Also, be sure to check out the random button—it’s a great way to get started on making a pattern of your own. I hope you enjoy tinkering with the ghost diagram applet as much as I have.

gd1 gd3
gd4 gd2

loops-of-zenAnd now for some more fun: three new games! When I ran across Loops of Zen, I had ghost diagrams on my mind. I think they have a similar feel to them. The goal in each level of Loops of Zen is to orient the paths and loops so that they connect up without any loose edges. I feel like this game—like good mathematics—requires both a big-picture, intuitive grasp of the playing field and detailed, logical thinking. Put another way, you need both global strategy  and local tactics. Also, if you like playing Entanglement, then I bet you’ll like Loops of Zen, too.

z-rox

Last week we wrote about Flatland. This book and the movies it inspired describe what it might be like if creatures of different dimensionality were to meet each other. The game Z-Rox puts you in the shoes of a Flatlander. Mystery shapes pass through your field of vision a slice at a time, and it’s up to you to identify what they are. It’s a tricky task that requires a good imagination.

Hat tip to Casual Girl Gamer for both of these great mathy games.

steppin-stones

Steppin’ Stones

Steppin’ Stones is a fun little spatial puzzle game I recently came across. You should definitely check it out. It also provides a nice segue to our last mathy item for the week, because a Steppin’ Stones board looks a lot like a Scrabble board. Scrabble, of course, is a word game. Aside from the arithmetic of keeping score, there isn’t much mathematics involved in playing it. In addition, the universe of Scrabble—the English dictionary—is not particularly elegant from a math standpoint. However, it’s the amazing truth that even in arenas that don’t seem very mathematical, math can often be applied in useful ways.

From a comic about Prime Scrabble on Spiked Math.

From a comic about Prime Scrabble on Spiked Math.

In Re-evaluating the values of the tiles in Scrabble™, the author—who goes by DTC and is a physics graduate student at Cornell—wonders whether the point values assigned to letters in Scrabble are correctly balanced. The basic premise is that the harder a letter is to play, the more it should be worth. DTC does what any good mathematician does—lays out assumptions clearly, reasons from them to make a model, critiques the arguments of others, and of course makes lots of useful calculations. One tool DTC uses is the Monte Carlo method. In the end, DTC finds that the current Scrabble point values are very close to what the model would assign.

MATHI really enjoyed the article, and I hope you will, too. And since Scrabble is a “crossword game”, I think I’ll leave you with a couple of “crossnumber” puzzles. Here are some straightforward ones, while these require a little more thinking.

Have a great week, and bon appetit!

P.S. I can’t resist sharing this video as a bonus: a cellular automaton of rock-paper-scissors! Blue beats green, green beats red, and red beats blue. Hooray for non-transitive swirls!