Tag Archives: geography

Continents, Math Explorers’ Club, and “I use math for…”

Welcome to this week’s Math Munch!

stevestrogatz

Steven Strogatz.

All of our munches this week come from the recent tweets of mathematician, author, and friend of the blog Steven Strogatz. Steve works at Cornell University as an applied mathematician, tackling questions like “If people shared taxis with strangers, how much money could be saved?” and “What caused London’s Millennium Bridge to wobble on its opening day?”

On top of his research, Steve is great at sharing math with others. (This week I learned one great piece of math from him, and then another, and suddenly there was a very clear theme to my post!) Steve has written for the New York Times and was recently awarded the Lewis Thomas Prize as someone “whose voice and vision can tell us about science’s aesthetic and philosophical dimensions, providing not merely new information but cause for reflection, even revelation.”

NMFLogo_Horiz_RGB_300DPI2This Saturday, Steve will be presenting at the first-ever National Math Festival. The free and fun main event is at the Smithsonian in Washington, DC, and there are related math events all around the country this weekend. Check and see if there’s one near you!

Here are a few pieces of math that Steve liked recently. I liked them as well, and I hope you will, too.

First up, check out this lovely image:

tesselation1-blog480It appeared on Numberplay and was created by Hamid Naderi Yeganeh, a student at University of Qom in Iran. Look at the way the smaller and smaller tiles fit together to make the design. It’s sort of like a rep-tile, or this scaly spiral. And do those shapes look familiar? Hamid was inspired by the shapes of the continents of Africa and South America (if you catch my continental drift). Maybe you can create your own Pangaea-inspired tiling.

If you think that’s cool, you should definitely check out Numberplay, where there’s a new math puzzle to enjoy each week!

Next, up check out the Math Explorers’ Club, a collection of great math activities for people of all ages. The Club is a project of Cornell University’s math department, where Steve teaches.

The first item every sold on the auction site eBay. Click through for the story!

The first item every sold on the auction site eBay. Click through for the story!

One of the bits of math that jumped out to me was this page about auctions. There’s so much strategy and scheming that’s involved in auctions! I remember being blown away when I first learned about Vickrey auctions, where the winner pays not what they bid but what the second-highest bidder did!

If auctions aren’t your thing, there’s lots more great math to browse at the Math Explorer’s Club—everything from chaos and fractals to error correcting codes. Even Ehrenfeucht-Fraïssé games, which are brand-new to me!

And finally this week: have you ever wondered “What will I ever use math for?” Well, SIAM—the Society for Industrial and Applied Mathematics—has just the video for you. They asked people attending one of their meetings to finish the sentence, “I use math for…”. Here are 32 of their answers in just 60 seconds.

Thanks for sharing all this great math, Steve! And bon appetit, everyone!

SquareRoots, Concave States, and Sea Ice

Welcome to this week’s Math Munch!

The most epic Pi Day of the century will happen in just a few weeks: 3/14/15! I hope you’re getting ready. To help you get into the spirit, check out these quilts.

American Pi.

American Pi.

African American Pi.

African American Pi.

There’s an old joke that “pi is round, not square”—a punchline to the formula for the area of a circle. But in these quilts, we can see that pi really can be square! Each quilt shows the digits of pi in base 3. The quilts are a part of a project called SquareRoots by artist and mathematician John Sims.

John Sims.

John Sims.

There’s lots more to explore and enjoy on John’s website, including a musical interpretation of pi and some fractal trees that he has designed. John studied mathematics as an undergrad at Antioch College and has pursued graduate work at Wesleyan University. He even created a visual math course for artists when he taught at the Ringling College of Art and Design in Florida.

I enjoyed reading several articles (1, 2, 3, 4) about John and his quilts, as well as this interview with John. Here’s one of my favorite quotes from it, in response to “How do you begin a project?”

It can happen in two ways. I usually start with an object, which motivates an idea. That idea connects to other objects and so on, and, at some point, there is a convergence where idea meets form. Or sometimes I am fascinated by an object. Then I will seek to abstract the object into different spatial dimensions.

simstrees

Cellular Forest and Square Root of a Tree, by John Sims.

You can find more of John’s work on his YouTube channel. Check out this video, which features some of John’s music and an art exhibit he curated called Rhythm of Structure.

Next up: Some of our US states are nice and boxy—like Colorado. (Or is it?) Other states have very complicated, very dent-y shapes—way more complicated than the shapes we’re used to seeing in math class.

Which state is the most dent-y? How would you decide?

3fe3acace86442e7a0ddf5c7369f14dc.480x480x351

West Virginia is pretty dent-y. By driving “across” it, you can pass through many other states along the way.

The mathematical term for dent-y is “concave”. One way you might try to measure the concavity of a state is to see how far outside of the state you can get by moving in a straight line from one point in it to another. For example, you can drive straight from one place in West Virginia to another, and along the way pass through four other states. That’s pretty crazy.

But is it craziest? Is another state even more concave? That’s what this study set out to investigate. Click through to find out their results. And remember that this is just one way to measure how concave a state is. A different way of measuring might give a different answer.

Awesome animal kingdom gerrymandering video!

Awesome animal kingdom gerrymandering video!

This puzzle about the concavity of states is silly and fun, but there’s more here, too. Thinking about the denty-ness of geographic regions is very important to our democracy. After all, someone has to decide where to draw the lines. When regions and districts are carved out in a way that’s unfair to the voters and their interests, that’s called gerrymandering.

Karen Saxe

Karen Saxe.

To find out more about the process of creating congressional districts, you can listen to a talk by Karen Saxe, a math professor at Macalester College. Karen was a part of a committee that worked to draw new congressional districts in Minnesota after the 2010 US Census. (Karen speaks about compactness measures starting here.)

Recently I ran across an announcement for a conference—a conference that was all about the math of sea ice! I never grow tired of learning new and exciting ways that math connects with the world. Check out this video featuring Kenneth Golden, a leading mathematician in the study of sea ice who works at the University of Utah. I love the line from the video: “People don’t usually think about mathematics as a daring occupation.” Ken and his team show that math can take you anywhere that you can imagine.

Bon appetit!

Reflection sheet – SquareRoots, Concave States, and Sea Ice