# Havel-Hakimi, Temari, and more GIFS

Welcome to this week’s Math Munch!  We’ve got another great game for you, a followup with Temari artist Carolyn Yackel, and some mind-blowing math gifs.

Havel-Hakimi

First up, a nice little graph theory game created by Jacopo Notarstefano.  The game is about whether or not sets of numbers meet the conditions for being “graphical.”  Maybe the best way to understand what that means is to start playing.  If you can beat a level, then the starting number set is graphical.  Go play Havel-Hakimi.

In 1960, mathematicians Paul Erdös and Tibor Gallai proved a theorem about what number sets were graphical.  The name of the game refers to an algorithm you can use to solve the game.  You might figure it out just by playing the game, but here’s a (pretty dry) video explaining how the Havel-Hakimi algorithm works.

Jacopo’s website has a few other nice projects.  See if you can figure out Who Killed the Duke of Densmore, or try Four-Coloring the Dodecahedron.

Carolyn Yackel

Up next, remember Carolyn Yackel.  We wrote about Carolyn and her mathematical art a while back.  Well we finally got around to doing a little Q&A.  Give it a read to learn about Carolyn and her love of math.

Carolyn’s art (which can be seen here) is called temari, the japanese art of embroidered spheres. Since our post about Carolyn we found out that a now 93-year old grandmother posted a lifetime of temari on flickr.  These beautiful objects have symmetry that mimic various polyhedra, which I just love.  Read Carolyn’s Q&A to hear about how you make them.

A Grandmother’s Temari Work

Finally, a while back we shared some mathematical gif animations created by Bees and Bombs.  It’s time once again to look at some amazing animations.  This time they’re created by David Pope.  Here’s the complete archive of animations.  I’ll post some of my very favorites below, but there are dozens of dozens of good animations. (A dozen dozens is gross!)

Have a great week.  Bon appetit!

## Full gallery of mathematical gifs

 Pyramid Rolling Prisms Sphere

Spinning Octahedra