Tag Archives: tessellation

The Rhombic Dodec, Honeycombs, and Microtone

Welcome to this week’s Math Munch! Some cool pictures, videos, and a new game this week.

A couple of week’s ago, Anna wrote about the familiar hexagonal honeycomb that bees make, but that’s not the only sort of honeycomb. Mathematically, a honeycomb is the 3D version of a tessellation. Instead of covering the plane with some kind of polygon, a honeycomb fills space with some polyhedron. The cube works. Do you think tetrahedra would work? Can you think of other shapes that might work. Can you believe this works!?! (Look at the one at the bottom of that page.)

Inside the cubic honeycomb

Inside the cubic honeycomb

Truncated Octahedra

Truncated Octahedra

Tetradecahedra

Tetradecahedra

Rhombic Dodecahedral Honeycomb

Rhombic Dodecahedral Honeycomb

I want to introduce you to one of my new favorite “space-filling polyhedra.” Meet, the rhombic dodecahedron, which you can see packed nicely on the right or in crystal form below. (Click the crystal for a really great video by George Hart about crystals and polyhedra.)

Garnet Crystal

Garnet Crystal

I’ll let this video serve as an introduction to the rhombic dodecahedron and some of its features. Plus, it gives you something to make if you’d like. You’ll just need a deck of cards, and maybe a ruler and some tape.

Pretty wonderful, am I right? Here’s a link for a simple paper net you can fold up into a rhombic dodecahedron. For the really adventurous or dexterous, here’s a how-to video for a pretty tricky origami model. And here’s two more related videos showing how one can be built from two cubes.

Yoshimoto Stack

Stellated rhombic dodecahedral honeycomb

Here’s one final amazing fact about the rhombic dodecahedron. Its first stellation is the star form of the Yoshimoto Cube!!! (background info on stellation here) Perhaps more amazing is the fact that even this shape can stack to fill 3D space!

Microtone

Microtone

But now, as promised, I present a new game. Microtone is a mindbending pathwinding game played on, you guessed it, rhombic dodecahedra. (I know.) Click to move around the shape and land on all of the X’s. To rotate the dodecahedra, click and drag on the page.

Bon appetit!

World’s Oldest Person, Graphing Challenge, and Escher Sketch

265282-jiroemon-kimura-the-world-s-oldest-living-man-celebrated-his-115th-birOn April 19th, Jiroeman Kimura celebrated his 116th birthday. He was – and still is – the world’s oldest person, and the world’s longest living man – ever. (As far as researchers know, that is. There could be a man who has lived longer that the public doesn’t know about.) The world’s longest living woman was Jeanne Calment, who lived to be 122 and a half!

Most people don’t live that long, and, obviously, only one person can hold the title of “Oldest Person in the World” at any given time. So, you may  be wondering… how often is there a new oldest person in the world? (Take a few guesses, if you like. I’ll give you the answer soon!)

stackSome mathematicians were wondering this, too, and they went about answering their question in the way they know best: by sharing their question with other mathematicians around the world! In April, a mathematician who calls himself Gugg, asked this question on the website Mathematics Stack Exchange, a free question-and-answer site that people studying math can use to share their ideas with each other. Math Stack Exchange says that it’s for “people studying math at any level.” If you browse around, you’ll see mathematicians asking for help on all kinds of questions, such as this tricky algebra problem and this problem about finding all the ways to combine coins to get a certain amount of money.  Here’s an entry from a student asking for help on trigonometry homework. You might need some specialized math knowledge to understand some of the questions, but there’s often one that’s both interesting and understandable on the list.

Anyway, Gugg asked on Math Stack Exchange, “How often does the oldest person in the world die?” and the community of mathematicians around the world got to work! Several mathematicians gave ways to calculate how often a new person becomes the oldest person in the world. You can read about how they worked it out on Math Stack Exchange, if you like, or on the Smithsonian blog – it’s a good example of how people use math to model things that happen in the world. Oh, and, in case you were wondering, a new person becomes the world’s oldest about every 0.65 years. (Is that around what you expected? It was definitely more often than I expected!)

advanced 4

Next, check out this graph! Yes, that’s a graph – there is a single function that you can make so that when you graph it, you get that.  Crazy – and beautiful! This was posted by a New York City math teacher named Michael Pershan to a site called Daily Desmos, and he challenges you to figure out how to make it!  (He challenged me, too. I worked on this for days.)

qod0nxgctfMichael made this graph using an awesome free, online graphing program called Desmos. Michael and many other people regularly post graphing challenges on Daily Desmos. Some of them are very difficult (like the one shown above), but some are definitely solvable without causing significant amounts of pain. They’re marked with levels “Basic” and “Advanced.” (See if you can spot contributions from a familiar Math Munch face…)

30a2

Here are more that I think are particularly beautiful. If you’re feeling more creative than puzzle-solvey, try making a cool graph of your own! You can submit a graphing challenge of your own to Daily Desmos.

escher 3If you’ve got the creative bug, you could also check out a new MArTH tool that we just found called Escher Web Sketch. This tool was designed by three Swiss mathematicians, and it helps you to make intricate tessellations with interesting symmetries – like the ones made by the mathematical artist M. C. Escher. If you like Symmetry Artist and Kali, you’ll love this applet.

Be healthy and happy! Enjoy graphing and sketching! And, bon appetit!

Marjorie Rice, Inspired by Math, and Subways

Welcome to this week’s Math Munch!

A few weeks ago, I learned about an amazing woman named Marjorie Rice.  Marjorie is a mathematician – but with a very unusual background.

mrice_picMarjorie had no mathematical education beyond high school.  But, Marjorie was always interested in math.  When her children were all in school, Marjorie began to read about and work on math problems for fun.  Her son had a subscription to Scientific American, and Marjorie enjoyed reading articles by Martin Gardner (of hexaflexagon fame).  One day in 1975, she read an article that Martin Gardner wrote about a new discovery about pentagon tessellations.  Before several years earlier, mathematicians had believed that there were only five different types of pentagons that could tessellate – or cover the entire plane without leaving any gaps.   But, in 1968, three more were discovered, and, in 1975, a fourth was found – which Martin Gardner reported on in his article.

Marjorie's first type of pentagonWhen she read about this, Marjorie became curious about whether she could find her own new type of pentagon that could tile the plane.  So, she got to work.  She came up with her own notation for the relationships between the angles in her pentagons.  Her new notation helped her to see things in ways that professional mathematicians had overlooked.  And, eventually… she found one!  Marjorie wrote to Martin Gardner to tell him about her discovery.  By 1977, Marjorie had discovered three more types of pentagons that tile the plane and her new friend, the mathematician Doris Schattschneider, had published an article about Marjorie’s work  in Mathematics Magazine.

type11There are now fourteen different types of pentagons known to tile the plane… but are there more?  No one knows for sure.  Whether or not there are more types of pentagons that tile the plane is what mathematicians call an open problem.  Maybe you can find a new one – or prove that one can’t be found!

Marjorie has a website called Intriguing Tessellations on which she’s written about her work and posted some of her tessellation artwork.  Here is one of her pentagon tilings transformed into a tessellation of fish.

fishgrid fishsm

By the way, it was Marjorie’s birthday a few weeks ago.  She just turned 90 years old.  Happy Birthday, Marjorie!

wild about math logoNext up, I just ran across a great blog called Wild About Math!  This blog is written by Sol Lederman, who used to work with computers and LOVES math.  My favorite part about this blog is a series of interviews that Sol calls, “Inspired by Math.”  Sol has interviewed about 23 different mathematicians, including Steven Strogatz (who has written two series of columns for the New York Times about mathematics) and Seth Kaplan and Deno Johnson, the producer and writer/director of the Flatland movies.  You can listen to Sol’s podcasts of these interviews by visiting his blog or iTunes.  They’re free – and very interesting!

subway map 2Finally, what New York City resident or visitor isn’t fascinated by the subway system? And what New York City resident or visitor doesn’t spend a good amount of time thinking about the fastest way to get from point A to point B?  Do you stay on the same train for as long as possible and walk a bit?  Or do you transfer, and hope that you don’t miss your train?

chris and matt

Chris and Matt, on the subway.

Well, in 2009, two mathematicians from New York – Chris Solarz and Matt Ferrisi – used a type of mathematics called graph theory to plan out the fastest route to travel the entire New York City subway system, stopping at every station.  They did the whole trip in less than 24 hours, setting a world record!  Graph theory is the branch of mathematics that studies the connections between points or places.  In their planning, Chris and Matt used graph theory to find a route that had the most continuous travel, minimizing transfers, distance, and back-tracking.  You can listen to their fascinating story in an interview with Chris and Matt done by the American Mathematical Society here.

If you’re interested in how graph theory can be used to improve the efficiency of a subway system, check out this article about the Berlin subway system (the U-bahn).  Students and professors from the Technical University Berlin used graph theory to create a schedule that minimized transfer time between trains.  If only someone would do this in New York…

Bon appetit!