Author Archives: Anna Weltman

Harriss Spiral, Math Snacks, and SET

Happy New Year, and welcome to this week’s Math Munch!

The Harriss Spiral

Exciting news, folks! The Golden Ratio curve– that beautiful spiral that everyone adores– has evolved. And not into a freak of nature, either! Into something– dare I say it?– even more beautiful…

Meet the Harriss spiral. It was discovered/invented by mathematician and artist Edmund Harriss (featured before here and here) when he began playing around with golden rectangles. A golden rectangle is a very special rectangle, whose sides are in a particular proportion. You can read more about them here— but what’s most important to this new discovery is what you can do with them. If you make a square inside a golden rectangle you get another golden rectangle– and continuing to make squares and new golden rectangles inside of ever-shrinking golden rectangles, and drawing arcs through the squares, is one way to make the beautiful golden ratio spiral.

Edmund Harriss decided to get creative. What would happen, he wondered, if he cut the golden rectangle into two similar rectangles (same shape, just one is a scaled-down version of the other) and a square? And then what if he did the same thing to the new rectangles, again and again to make a fractal? Edmund’s new golden rectangle fractal makes this pattern, and when you draw a spiral through it, you get a lovely branching shape.

But don’t take my word for it. Math journalist Alex Bellos broke the news just this week in his article in The Guardian. His article explains much, much more than I can here– check it out to learn many more wonderful things about the Harriss spiral (and other spirals that Harriss has created…)!

(Bonus: Here’s a GeoGebra demonstration created by John Golden that builds the Harriss Spiral. It’s awesome!)

Next up is a site that sounds quite a lot like Math Munch. But it’s all games and cartoons, all the time. (Maybe that means you’ll like it better…) Check out Math Snacks, a site developed by a group of math educators at New Mexico State University. They worked hard to create games and animations that are both fun and full of interesting math.

One of my favorite games on Math Snacks is called Game Over Gopher.In this game, you have to save your carrot from an army of gophers by placing little machines that feed the gophers. Where’s the math, you may wonder? Placing the gopher-feeders and the other equipment that can help you save the carrot requires you to think carefully about geometry and coordinates.

Finally, speaking of games, here’s one of my favorites. I love to play SET, and I recently found a way to play online– either against a friend or against the computer. Click on this link to start your own game!

To play SET, you deal 12 cards. Then, you try to find a group of 3 cards that all share and all don’t share the same characteristics. For example, in the picture to the right– do you see the cards with the empty red ovals? They’re all the same shape, shading, and color (oval, empty, red), but they’re all different numbers (1, 2, and 3). Can you find any other sets in the picture? (Hint: One involves purple.)

Want to hone your SET skills without competing? Here’s a daily SET puzzle to challenge you.

Enjoy the games (and maybe invent a spiral of your own) and bon appetit!

Grothendieck, Circle Packing, and String Art

Welcome to this week’s Math Munch!

Grothendieckportra_3107171cThis week brought some sad news to the mathematical world. Alexander Grothendieck, known by many as the greatest mathematician of the past century, passed away on November 13th. You may not have heard of him, but many mathematicians say that the work he did in math was as influential as the work Albert Einstein did in physics.

One of the things that make Grothendieck so interesting is, of course, the math he did. Grothendieck was always very creative. When he was in high school, he preferred to do math problems he made up on his own over the problems assigned by his teacher. “These were the book’s problems, and not my problems,” he said.

When he was young, inspired by some gaps he found in definitions in his geometry book about measuring lengths and areas, Grothendieck re-created some of the most important mathematical ideas of the beginning of the twentieth century. Maybe this sounds silly to you– why re-invent something that’s already been done? But, to Grothendieck, the most important part was that he’d done the whole thing by himself. He’d figured out something in his own way. He later wrote that this experience showed him what being a mathematician was like:

Without having been told, I nevertheless knew ‘in
my gut’ that I was a mathematician: someone who
‘does’ math, in the fullest sense of the word…

During his years as a mathematician, Grothendieck worked on connecting different parts of math (a project requiring a lot of creativity)– algebra, geometry, topology, and calculus, among others.

Grothendieck kid

Alexander Grothendieck as a kid

The other thing that makes Grothendieck so interesting is his life story. As a kid, Grothendieck and his parents fled from Germany to France to escape the Nazis. As an adult, Grothendieck spoke out strongly for peace. He used his fame to take a stand against the wars of the second half of the twentieth century. This eventually led him to step away from the world of mathematicians– which many regretted. But he left behind work that changed all of mathematics for the better.

If you’d like to learn more about Grothendieck’s fascinating life and work, check out this great (but long) article from the American Mathematical Society. This article provides a shorter history, including a great statement Grothendieck made about his feelings on creativity in mathematics. Grothendieck was a very private person, so many of his mathematical writings aren’t available online– but the Grothendieck Circle has done their best to collect everything written about him.

Fractal-Apollonian-Gasket-Variations-02

A pretty circle packing

Next up, a little something for you to play with! We were studying circle packing problems in one of my classes this week. Did you know that you can fit exactly six circles snugly around another circle of the same size? But, if you try to fit circles snugly around a circle twice as large, it doesn’t work? I wonder why that is…

 

I did it!

I did it!

Anyway, my class inspired me to look for a circle packing game– and I found one! In this game, simply called Circle Packing, you have to fit all of the smaller circles into the larger circle– without any of them touching! It’s pretty tricky, and really fun.

String art wall long

String art circleFinally, the Math Munch team got something wonderful in the mail (email, I guess) this week! Math art made by Julia Dweck’s 5th grade math class! Julia’s class has been working hard to make parabolic curve string art– curves made by drawing (or stringing, in this case) many, many straight lines. They plotted each curve precisely before stringing it, to make sure it was both mathematically and artistically perfect. The pieces they made are so creative and beautiful. We’re proud to feature them on our site!

String art parabolaYou can see the whole collection of string art pieces made by Julia’s class on our Readers’ Gallery String Art page. And, want to know more about how the 5th graders made their String Art? Have any questions for Julia and her students about their love of math and the connections they see between math and art? Write your questions here and we’ll send them to Julia’s students!

Have any math art of your own? Send it to mathmunchteam@gmail.com, and we’ll post it in the Readers’ Gallery!

Bon appetit!

Weights, Crazy Geometry Game, and Pumpkin Polyhedra

Welcome to this week’s Math Munch!

Weighing puzzleHere’s a puzzle for you: You have 12 weights, 11 of which weigh the same amount and 1 of which is different. Luckily you also have a balance, but you’re only allowed to use it three times. Can you figure out which weight is the different weight?

You certainly can! I won’t tell you how, but you can figure it out for yourself while playing this interactive weight game. This puzzle is tricky, but definitely fun. If one weight puzzle isn’t enough for you, you’re in luck– there are many, many variations! Check out this site to try a similar puzzle with nine weights, ten weights, and 27 weights.

Circle two pack

My solution to the Circle Pack 2 challenge. Can you do it in only 5 moves?

Next up, if you like drawing challenges, this is the game for you. Check out this crazy geometry game, in which you have to draw different shapes (like perfect equilateral triangles, squares, pentagons, and groups of circles of particular sizes) using only circles and straight lines! Here’s my solution to one of the challenges, the Circle Pack 2. See the two smaller circles inside of the larger middle circle? That’s what I wanted to draw– but I had to make all of those other circles and lines to get there! I did the Circle Pack 2 challenge in 8 moves, but apparently there’s a way to do it in only 5…

Truncated icosahedron pumpkinFinally, it’s pumpkin season again! Every year I scour the internet for new math-y ways to carve pumpkins. We’re all in luck this year– because I found great instructions for how to carve pumpkin polyhedra from Math Craft!  Check out this site to learn how to carve all the basics– tetrahedra, cubes, octahedra, dodecahedra, and (my favorite) icosahedra– and a bonus polyhedron, the truncated icosahedron (also know as the soccer ball).

Pumpkin polyhedra

Pumpkin Platonic polyhedra!

 

Don’t forget to make pi with the leftover pumpkin! Oh, and, bon appetit!