Author Archives: Paul Salomon

Turing, Nets, and More Yoshimoto

Welcome to this week’s Math Munch!

The Turing Tenner

What you see there is a 10 pound note. You know, British money. So who’s that guy on there? Must be a president or king or prime minister or something, right? NO! That’s Alan Turing, one of the most important mathematicians of the 20th century. During WWII, he was a codebreaker for the Allies, intercepting German submarine codes. His analysis of the Enigma Machine was a huge turning point in the war. (video explanation)

In England they put the queen on one side of the money, but the other’s used for significant Brits. Charles Darwin is currently on the 10 pound note, but these things change, and there’s a petition to get Turing on the ten. A Turing Tenner, as they call it. It’s all part of Turing’s 100th birthday celebration.

Google’s homage to Alan Turing

Since Turing did some of the earliest work on computing theory and artificial intelligence, Google paid tribute to the computer legend with a recent doodle. It’s a fantastic little puzzle game based on his work. I’ll let you figure it out, but definitely try this one. Click here to play!

In last week’s munch, Justin introduced us to the Yoshimoto Cube, and we’ve kept on thinking about it.  Here’s a couple simple templates for making one cubelet.  (template 1, template 2)  Make 8 of those and hinge them together with some tape.  I made a short video to show you how to connect them.  But it didn’t end there!

A flat template for a 3D model like that is called a net or a mesh.  Do you know any nets for a cube?  There’s actually lots.  Check out this site, where it’s your job to figure out which nets fold up into a cube and which ones don’t.  It’s a lot of fun.  Here’s another net site showing lots of nets for a pyramid, dodecahedron, and a whole bunch of other solid shapes.  How many do you think there are for a tetrahedron?  Can you design one for an octahedron?

The Monster Mesh

I spent some time this week trying to design a better net for the

The Mega-Monster Mesh
A one-sheet model for the Yoshimoto cube.

Yoshimoto cube, and I think I succeeded!  The tape on my hinges kept breaking, so I wanted to try to make paper hinges.  With my first attempt, which I called The Monster Mesh, I was able to design a net for half of the star.  Down from 8 tape hinges to 2 was a big improvement, but last night I got it perfect!  Using my new version, The Mega-Monster Mesh,  you can make the entire cube without any taped hinges!  The model is pretty complicated, so if you want to give it a shot, feel free to email us at MathMunchTeam@gmail.com with any questions.

Finally, something I’m really really proud of.  Justin and I spent most of Sunday afternoon on the floor of my apartment making a stop motion animation of with Yoshimoto Cube models.  It’s called “Yoshimoto Friends,” and we hope you love it as much as we do.  (We used the free iMotionHD app for iPad and iPhone, in case you want to make your own stop motion animation.)

Bon appetit!

Update:

I made another video showing how the mega-monster mesh folds up.  Here it is, acting like a transforming bug!

The Fractal Foundation, Schoolhouse Rock, and More

Welcome to this week’s Math Munch!

Triangle Cutout Fractal

Up first, check out the Fractal Foundation.  They’re mission is simple: “We use the beauty of fractals to inspire interest in Science, Math and Art.”  If you played around with recursive drawing a few weeks ago, then perhaps you were as inspired by fractals as they hope you’ll be.  If you’re not really sure what fractals actually are, here’s a great one-page explanation from the Fractal Foundation website.  They also have an excellent page of “fractivities,” including instructions for the beautiful paper cutout fractal pictured on the right.  If you want to have your mind blow, check out their fantastic page of fractal videos.  Just amazing.



Next up, have you ever heard of Schoolhouse Rock?  It’s a series of rocking animated music videos that originally ran on TV from 1973 to 1985.  Vintage math goodness!  They cover all kinds of educational stuff like grammar and history, but I totally love the math videos, and a few of them are on YouTube!  Down below you can watch two of my favorites, and you can find the others here.  if you poke around YouTube, you could probably find a few more as well.




Finally, a few additions to our resource pages.  For the Math Games page, we’re adding Linebounder.  You and the computer battle to draw a line towards your goal.  I had a really hard time with this at first, but there are certain strategies that the computer simply cannot beat.  You just have to find them.  Also new is Shift, another fun game that plays with the relationship between figure and ground.  For the new Math Art Tools page, we’re adding Tessellate!  It’s an interactive applet that lets you make custom tiles to cover the plane.  Here’s a few examples I just made.


Bon appetit!

Hexagonal

Triangular

Rectangular

Scott Kim, Puzzles, and Games

Welcome to this week’s Math Munch!

Scott Kim

Meet Scott Kim.  He’s loved puzzles ever since he was a kid, so these days he designs puzzles for a living.  He’s been writing puzzles for Discover Magazine for years in a monthly column called “The Boggler.”  Click that link to look through some of his Boggler archives.  Here’s a cool one he wrote in 2002 about hypercubes and the 4th dimension.

Ambigram

In his 11-minute TED talk, Scott tells the story of his career and shares some of his favorite puzzles, games, and ambigrams.  It’s also completely clear how much he really loves what he does (as do I.)

Knights on Horseback – M.C. Escher

I’ve always loved “figure/ground” images, where the leftover space from one shape creates another recognizable shape.  M.C. Escher created some of the most famous and well-known examples of figure/ground art, but Scott Kim took the idea a step further – making an interactive puzzle game based on the ideas.  Naturally, the game is called “Figure Ground,” and it’s delightfully tricky.  You can even create your own levels.  Scott has a whole page of web games.  Go play!

Symmetrical Alphabet – Ambigram by Scott Kim

Still hungry for more Scott Kim?  He gave a presentation for the Museum of Math‘s lecture series, Math Encounters.  You can watch the full-length video here.  You can also watch an interview he did with Vi Hart by clicking here.

Finally, after you read a Math Munch (or right in the middle) do you ever have a question you wish someone could answer or something you want explained?  Or do you ever wish we could help you find more of something you liked in the post?  Well we can do that!  Just leave a comment on the bottom of the page, and the Math Munch team will be very happy to answer.  We’d love to hear from our readers.

Bon appetit!