Author Archives: Paul Salomon

Celebration of Mind, Cutouts, and the Problem of the Week

Welcome to this week’s Math Munch!  We’re going to revisit the work of Martin Gardner, look at some beautiful mathematical art, and see if we can dig into a college’s “problem of the week” program.

Martin Gardner

Martin Gardner

Last October, I wrote about Martin Gardner. He is one of the great popularizers of mathematics, known for his puzzles, columns in Scientific American, and over 100 books. Around the time of his birthday, October 21st, each year, people around the world participate in a global “Gathering4Gardner” — a so-called Celebration of Mind.

Two Sipirals

One of Martin Gardner’s many puzzles

These are gatherings of two or more people taking time to dig into the kinds of mathematics that Martin Gardner loved so much. Below you can find lots of ways to participate and share with family, friends, or strangers.

First, If you want to learn more about Gardner himself, here’s a very detailed interview. You can also try solving some of Gardner’s great puzzles. We featured both of these last year, but I recently found a whole new page of resources and activities for the Celebration of Mind.

In the video on the left you can see a geometric vanish like those we’ve previously featured (Get off the Earth, and Chocolate). The second is a surprising play on the Möbius Strip which we’ve also featured before (Art and Videos + Möbius Hearts). I hope you’ll find some time this week to celebrate Martin Gardner’s love of math and help grow your own. (Though, I guess if you’re reading this, you already are!)

Up next, check out the work of artist Elena Mir. This video shows a series of artworks she created over the last four years. They feature stacks of cut paper to form geometric shapes, and they make me wonder what I could make out of cut paper. If you make something, please let us now.

It reminds me of the work of Matt Shlian that we featured in our very first post.  You can watch Matt’s TED Talk or visit his website to see all sorts of cutouts and other paper sculptures, plus incredible videos like the one below. It might be my favorite video I’ve ever posted on Math Munch.

Finally, Macalester College in St. Paul, Minnesota has a weekly problem that they offer to their students, and the problem archives can be found online. These are for college students, so some of them are advanced or phrased in technical language, but I think we can find some that all of us can dig in to. Give these a try:

Have a mathematical week, and let us know if you do anything for the Celebration of Mind. Bon appetit!

Tic, Tac, and Toe

Who moved first?

Who moved first?

Welcome to this week’s Math Munch!  We’re taking a look at several Tic-Toe-Toe related items.

To the right you can see a little Tic-Tac-Toe puzzle I found here.  If the board below shows a real game of Tic-Tac-Toe, then which player moved first?  Think. Think!!

Now let’s talk about the basic game itself.  Tic-Tac-Toe is fun for new players, but at some point, we can all get really good at it.  How good? Well, there’s a strategy, which if you follow without making mistakes, you will never lose!  Amazing, right?  So what’s the strategy?  The picture below shows half of it.  Here’s how to play if you’re X and get to move first. (instructions below.)

Strategy for X (1st player)

Randall Munroe

Randall Munroe

“Your move is given by the position of the largest red symbol on the grid. When your opponent picks a move, zoom in on the region of the grid where they went. Repeat.”  Now find a friend and try it out!

This image comes from xkcd, a sometimes mathematical webcomic by Randall Munroe.  (We featured his Sierpinski Heart last Valentine’s Day.) Randall talks about his Tic-Tac-Toe strategy guide and several other mathy comics in this interview with Math Horizons Magazine, which is certainly worth a read.

The undefeated Tic-Tac-Toe player, a Tinkertoy computer

The undefeated Tic-Tac-Toe player, a Tinkertoy computer

The existence of strategies like the one above mean that a computer can be perfect at Tic-Tac-Toe.  In fact, in Boston’s Museum of Science, there is a computer made entirely of Tinkertoy (a construction system for kids like LEGO) that has never lost a game of tic-tac-toe. It was designed and built by a team of college students in the 1980’s. For more on this impeccable toy computer, read this article by computer scientist A.K. Dewdney.

Finally, I stumbled across a wonderful Tic-Tac-Toe variation game, sometimes called “Ultimate Tic-Tac-Toe,” but here called TicTacToe10.  Here’s a video explaining, but basically in this version, you have a Tic-Tac-Toe board of Tic-Tac-Toe boards.  That is, you have the 9 little boards, and the one big board that they make together. On your turn you make a move on one of the small boards.  Where you decide to go decides which of the nine small boards the next player gets to play in.  If you win a small board, it counts as your shape on the big board.  Crazy, right!?!?  If that’s confusing you’ll have to watch the video tutorial or just start playing.

Here’s a link to a 2-player version of Ultimate Tic-Tac-Toe so that you can play with a friend, although you could also do it on paper, you just have to remember where the last move was.

I hope you found something tasty this week.  Bon appetit!

Andrew Hoyer, Cameron Browne, & Sphere Inversion

Welcome to this week’s Math Munch! Fractals, origami, math art, games, and a mind-bending video are all ahead, so let’s get into it.

Andrew Hoyer

Andrew Hoyer

First up, let’s take a look at the work of Andrew Hoyer.  According to his website, he’s a “software engineer in his mid-twenties living it up in sometimes sunny San Francisco.” I came across his work when I found his beautiful and completely engaging introduction to simple fractals.  (Go on! Click. Then read, experiment and play!)

Cantor Set

A Cantor set

At the bottom of that page, Andrew links to a wonderful, long list of fractals, arranged by Hausdorff dimension, which is a way of measuring fractals as being something like 2.5 dimensions.  A line is 1 dimensional.  A plane is 2D, and you can find many fractals with dimension in between!!  Weird, right?

I was also really pleased to find Andrew’s Instagram feed, which features some of his beautiful origami creations.  Andrew’s agreed to answer your questions for an upcoming Q&A, so ask away!

Compound of 5 tetrahedra Truncated Icosahedron Cube Dodecahedron
Cameron Browne

Cameron Browne

Up next, meet Cameron Browne. He’s an accomplished researcher who designs and studies games. Take a look at the many many games Cameron has created. The rules and descriptions are there, and Cameron sent along links to playable versions of a few, which you can find by clicking the pictures below.  For the third one, you’ll need to search for “Margo” or “Spargo.” For his research, Cameron investigates the possibilities of artificial intelligence, and how a computer can be used to generate games and puzzles.

Yavalath

Yavalath
description

Margo and Spargo

Margo and Spargo
description
description

Cameron is also an artist, and he has a page full of his graphic designs.  I found Cameron through his page of Truchet curves.  I love the way his pages are full of diagrams and just enough information to start making sense of things, even if it’s not perfectly clear.  Cameron also has MANY pages of wonderful fractal-ish graphics: Impossible Fractals, Cantor Knots, Fractal Board Games, Woven Horns, Efficient Trees, and on and on…  And he has agreed to do a Q&A with us, so please, submit a question. What are you wondering?

A Cantor Knot

A Cantor Knot

A Truchet curve "Mona Lisa"

A Truchet curve “Mona Lisa”

An "impossible" fractal

An “impossible” fractal

And, as if that wasn’t enough mathy awesomeness, check out this video about turning a sphere inside out.  A bit of personal history, I actually used this video  (though it was only on VHS back then, checked out from the library) as part of the research for my independent research project during my senior year of college.  It gets pretty tricky, but if you watch it all the way through it starts to make some sense.

Have a great week.  Bon appetit!

Reflection sheet – Andrew Hoyer, Cameron Browne, & Sphere Inversion

Temari, Function Families, and Clapping Music

Welcome to this week’s Math Munch!

Carolyn Yackel

Carolyn Yackel

As Justin mentioned last week, the Math Munch team had a blast at the MOVES conference last week.  I met so many lovely mathematicians and learned a whole lot of cool math. Let me introduce you to Carolyn Yackel. She’s a math professor at Mercer University in Georgia, and she’s also a mathematical fiber artist who specializes in the beautiful Temari balls you can see below or by clicking the link. Carolyn has exhibited at the Bridges conference, naturally, and her 2012 Bridges page contains an artist statement and some explanation of her art.

temari15 temari3 temari16

Icosidodecahedron

Icosidodecahedron

Truncated Dodecahedron

Truncated Dodecahedron

Cuboctahedron

Cuboctahedron

Temari is an ancient form of japanese folk art. These embroidered balls feature various spherical symmetries, and part of Carolyn’s work has been figure out how to create and exploit these symmetries on the sphere.  I mean how do you actually make it that symmetric? Can you see in the pictures above how the symmetry of the Temari balls mimic the Archimedean solids? Carolyn has even written about using Temari to teach mathematics, some of which you can read here, if you like.

Read Carolyn Yackel’s Q&A with Math Munch.

 

Edmund Harriss

Edmund Harriss

Up next, you may remember Edmund Harriss from this post, and you might recall Desmos from this post. Well the two have come together! On his blog, Maxwell’s Demon, Edmund shared a whole bunch of interactive graphs from Desmos, in a post he called “Form Follows Function.” Click on the link to read the article, and click on the images to get graphs full of sliders you can move to alter the images. In fact, you can even alter the equations that generate them, so dig in, play some, and see what you can figure out.

graph2 graph1 graph3

Finally, I want to share a piece of music I really love. “Clapping Music” was written by Steve Reich in 1972. It is considered minimalist music, perhaps because it features two performers doing nothing but clapping. If you watch this performance of “Clapping Music” first (and I suggest you do) it might just sound like a bunch of jumbled clapping. But the clapping is actually built out of some very simple and lovely mathematical patterns. Watch the video below and you’ll see what I mean.

Did you see the symmetries in the video? I noticed that even though the pattern shifts, it’s always the same backwards as forwards. And I also noticed that the whole piece is kind of the same forwards and backwards, because of the way that the pattern lines back up with itself. Watch again and see if you get what I mean.

Bonus: Math teacher, Greg Hitt tweeted me about “Clapping Music” and shared this amazing performance by six bounce jugglers!!!  It’s cool how you can really see the patterns in the live performance.

I hope you find something you love and dig in. Bon appetit!

Yang Hui, Pascal, and Eusebeia

Yanghui_triangleWelcome to this week’s Math Munch! I’ve got some mathematical history, an interactive visualization site, some math art, and a mathematical story from the fourth dimension for you.

Yang Hui's Triangle animated

First, take a look at the animation and picture above. What do you notice? This is sometimes called Pascal’s Triangle (click for background info and cool properties of the triangle.) It’s named for Blaise Pascal, the mathematician who published a treatise on its properties in 1653. (Click here for some history of Pascal’s life and work.)

Yang Hui

Yang Hui

BUT actually, Pascal wasn’t the first to play with the triangle. Yang Hui, a 13th century Chinese mathematician, published writings about the triangle more than 500 years earlier! Maybe we ought to be calling it Yang Hui’s Triangle! The picture above is the original image from Yang Hui’s 13th century book. (Also look at the way the Chinese did numbers at that time. Can you see out how it works at all?)  Edit: David Masunaga sent us an email telling us about an error in Yang Hui’s chart.  He says some editors will even correct the error before publishing.  Can you find the mistake?

I bring this all up, because I found a neat website that illustrates patterns in this beautiful triangle. Justin posted before on the subject, including this wonderful link to a page of visual patterns in Yang Hui’s triangle. But I found a website that lets you explore the patterns on your own! The website lets you pick a number and then it colors all of its multiples in the triangle. Below you can see the first 128 lines of the triangle with different multiples colored. NOW YOU TRY!

2s

Evens

Multiples of 4

Multiples of 4

Ends in 5 or 0

Ends in 5 or 0

* * *

Recently, I’ve been working on a series of artworks based on the Platonic and Archimedean solids. You can see three below, but I’ll share many more in the future. These are compass and straight-edge constructions of the solids, viewed along various axes of rotational symmetry.

All of these drawings were done without “measuring” with a ruler, but I still had to get all of the sizes right for the lines and angles, which meant a lot of research and working things out. Along the way, I found eusebeia, a brilliant site that shows off some beautiful geometric objects in 3D and 4D. There’s a rather large section of articles (almost a book’s worth) describing 4D visualization. This includes sections on vision, cross-sections, projections, and anything you need to understand how to visualize the 4th dimension.

Uniform Polyhedra

A few uniform solids

The 5-cell and a story about it called "Legend of the Pyramid"

The 5-cell, setting for the short story, “Legend of the Pyramid

The site goes through all of the regular and uniform polyhedra, also known as the Platonic and Archimedean solids, and shows their analogs in 4D, the regular and uniform polychora. You may know the hypercube, but it’s just one of the 6 regular polychora.

I got excited to share eusebeia with you  when I found this “4D short story” at the bottom of the index. “Legend of the Pyramid” gives us a sense of what it would be like to live inside of the 5-cell, the 4D analog of the tetrahedron.

Well there you have it. Dig in. Bon appetit!

Yanghui_magic_squareBonus: Yang Hui also spent time studying magic squares.  (Remember this?)  In the animation to the right, you can see a clever way in which Yang Hui constructed a 3 by 3 magic square.

The Rhombic Dodec, Honeycombs, and Microtone

Welcome to this week’s Math Munch! Some cool pictures, videos, and a new game this week.

A couple of week’s ago, Anna wrote about the familiar hexagonal honeycomb that bees make, but that’s not the only sort of honeycomb. Mathematically, a honeycomb is the 3D version of a tessellation. Instead of covering the plane with some kind of polygon, a honeycomb fills space with some polyhedron. The cube works. Do you think tetrahedra would work? Can you think of other shapes that might work. Can you believe this works!?! (Look at the one at the bottom of that page.)

Inside the cubic honeycomb

Inside the cubic honeycomb

Truncated Octahedra

Truncated Octahedra

Tetradecahedra

Tetradecahedra

Rhombic Dodecahedral Honeycomb

Rhombic Dodecahedral Honeycomb

I want to introduce you to one of my new favorite “space-filling polyhedra.” Meet, the rhombic dodecahedron, which you can see packed nicely on the right or in crystal form below. (Click the crystal for a really great video by George Hart about crystals and polyhedra.)

Garnet Crystal

Garnet Crystal

I’ll let this video serve as an introduction to the rhombic dodecahedron and some of its features. Plus, it gives you something to make if you’d like. You’ll just need a deck of cards, and maybe a ruler and some tape.

Pretty wonderful, am I right? Here’s a link for a simple paper net you can fold up into a rhombic dodecahedron. For the really adventurous or dexterous, here’s a how-to video for a pretty tricky origami model. And here’s two more related videos showing how one can be built from two cubes.

Yoshimoto Stack

Stellated rhombic dodecahedral honeycomb

Here’s one final amazing fact about the rhombic dodecahedron. Its first stellation is the star form of the Yoshimoto Cube!!! (background info on stellation here) Perhaps more amazing is the fact that even this shape can stack to fill 3D space!

Microtone

Microtone

But now, as promised, I present a new game. Microtone is a mindbending pathwinding game played on, you guessed it, rhombic dodecahedra. (I know.) Click to move around the shape and land on all of the X’s. To rotate the dodecahedra, click and drag on the page.

Bon appetit!

TED, Bridges, and Silk

Welcome to this week’s Math Munch!

TEDxNYED pic

The Math Munch team at TEDxNYED

Marjorie Rice

Marjorie Rice | click to watch her interview video

On Saturday, the Math Munch team gave a 16-minute presentation at TEDxNYED about Math Munch!  (Eventually there will be a video, and we’ll be sure to share it with you right away, but you’ll have to wait a month, maybe.)

We started with the story of Marjorie Rice, and in searching for a good picture of her, we came across this wonderful interview in a documentary about Martin Gardner.  It’s so neat to hear her speak about her discoveries.  You can see how proud she is and how much she truly loves math.  Feel free to watch the whole documentary if you like.  I haven’t gotten a chance yet, but I know it’s full of incredible stuff.

In the spirit of TED, I decided to share a few mathematical TED talks.  This one is absolutely fascinating.  In it, mathematician Ron Eglash describes how fractals underly the african designs.  You know how we love fractals.

If you’re hungry for another TED talk, here’s one about connections between music, mathematics, and sonar.

Up next, remember when we wrote about attending last year’s Bridges conference?  Well it happens every year, of course, and this year’s gallery of mathematical art is available online!  Click on one of those images and you get to more of the artists work.  I could easily spend hours staring at this art, trying to understand them, and reading the descriptions and artist statements.  Seriously, there is just way too much cool stuff there, so I’ve picked out a few of my favorites.  Also, I have great news to announce: Chloé Worthington (previously featured) had some of her art accepted to the exhibition!  Congratulations, Chloe!  If you look closely, you’ll see some of my art in there too.  🙂

Bjarne Jespersen

Bjarne Jespersen

Marc Chamberland

Marc Chamberland

Bob Rollings

Bob Rollings

Chloe Worthington

Chloé Worthington

Mehrdad Garousi

Mehrdad Garousi

By the way, if you ever create any mathematical art of your own, we’d love to see it!  Send us an email at mathmunchteam@gmail.com, and maybe we’ll feature your work in an upcoming Math Munch. (Only if you want us too, of course.)

Yuri Vishnevsky

Silk creator Yuri Vishnevsky

Finally, I know many of you like playing around with Symmetry Artist, which can be found on our page of Math Art Tools.  If you like that, then you’ll love Silk!  It’s much the same, but generates a certain kind of whispiness as you draw that looks really cool.  It also lets you spiral your designs toward the center, a feature which Symmetry Artist lacks.  You can download the Silk app for iPad or iPhone, if you like.  Silk was designed by Yuri Vishnevsky, with sound design by Mat Jarvis.  Yuri has agreed to do a Q&A for us, but we haven’t quite finished it just yet.  I’ll upload it as soon as possible, but for now, you can read an interview Mat and Yuri did with a website called Giant Fire Breathing Dragon.

Bon appetit!

Silk1 Silk4 Silk2