Tag Archives: binary

Stomachion, Toilet Math, and Domino Computer Returns!

Welcome to this week’s Math Munch!

I recently ran across a very ancient puzzle with a very modern solution– and a very funny name. It’s called the Stomachion, and it looks like this:

Stomachion_850So, what do you do? The puzzle is made up of these fourteen pieces carved out of a 12 by 12 square– and the challenge is to make as many different squares as possible using all of the pieces. No one is totally sure who invented the Stomachion puzzle, but it’s definite that Archimedes, one of the most famous Ancient Greek mathematicians, had a lot of fun working on it.

StomaAnimSometimes Archimedes used the Stomachion pieces to make fun shapes, like elephants and flying birds. (If you think that sounds like fun, check out this page of Stomachion critters to try making and this lesson about the Stomachion puzzle from NCTM.) But his favorite thing to do with the Stomachion pieces was to arrange them into squares!

It’s clear that you can arrange the Stomachion pieces into a square in at least one way– because that’s how they start before you cut them out. But is there another way to do it? And, if there’s a second way, is there a third? How about a fourth? Because Archimedes was wondering about how many ways there are to make a square with Stomachion pieces, some mathematicians give him credit for being an inventor of combinatorics, the branch of math that studies counting things.

Ostomachion536Solutions_850It turns out that there are many, many ways to make squares (the picture above shows all of them– click on it for greater detail)– and Archimedes didn’t find them all. But someone else did, over 2,000 years later! He used a computer to solve the problem– something Archimedes could never have done– but mathematician Bill Cutler found that there are 536 ways to make a square with Stomachion pieces! That’s a lot! If you’ve tried to make squares with the pieces, you might be particularly surprised– it’s pretty tricky to arrange them into one unique square, let alone 536. This finding was such a big deal that it made it into the New York Times. (Though you may notice that the number reported in the article is different– that’s how many ways there are to make a square if you include all of the solutions that are symmetrically the same.)

Other mathematicians have worked on finding the number of ways to arrange the Stomachion pieces into other shapes– such as triangles and diamonds. Given that it took until 2003 for someone to find the solution for squares, there are many, many open questions about the Stomachion puzzle just waiting to be solved! Who knows– if you play with the Stomachion long enough, maybe you’ll discover something new!

Next up, the mathematicians over at Numberphile have worked out a solution to a problem that plagued me a few weeks ago while I was camping– choosing the best outdoor toilet to use without checking all of them for grossness first. Is there a way to ensure that you won’t end up using the most disgusting toilet without having to look in every single one of them? Turns out there is! Watch this video to learn how:

Finally, a little blast from the past. Almost two years ago I share with you a video of something really awesome– a computer made entirely out of dominoes! Well, this year, some students and I finally got the chance to make one of our own! It very challenging and completely exhausting, but well worth the effort. Our domino computer recently made its debut on the mathematical internet, so I thought I’d share it with all of you! Enjoy!

Bon appetit!

Math Awareness Month, Hexapawn, and Plane Puzzles

Welcome to this week’s Math Munch!

April is Mathematics Awareness Month. So happy Mathematics Awareness Month! This year’s theme is “Mathematics, Magic, and Mystery”. It’s inspired by the fact that 2014 would have marked Martin Gardner’s 100th birthday.

MAM

A few of the mathy morsels that await you this month on mathaware.org!

Each day this month a new piece of magical or mysterious math will be revealed on the MAM site. The mathematical offering for today is a card trick that’s based on the Fibonacci numbers. Dipping into this site from time to time would be a great way for you to have a mathy month.

It is white

It is white’s turn to move. Who will win this Hexapawn game?

Speaking of Martin Gardner, I recently ran across a version of Hexapawn made in the programming language Scratch. Hexapawn is a chess mini-game involving—you guessed it—six pawns. Martin invented it and shared it in his Mathematical Games column in 1962. (Here’s the original column.) The object of the game is to get one of your pawns to the other side of the board or to “lock” the position so that your opponent cannot move. The pawns can move by stepping forward one square or capturing diagonally forward. Simple rules, but winning is trickier than you might think!

The program I found was created by a new Scratcher who goes by the handle “puttering”. On the site he explains:

I’m a dad. I was looking for a good way for my daughters to learn programming and I found Scratch. It turns out to be so much fun that I’ve made some projects myself, when I can get the computer…

puttering's Scratch version of Conway's Game of Life

puttering’s Scratch version of Conway’s Game of Life

Something that’s super cool about puttering’s Hexapawn game is that the program learns from its stratetgy errors and gradually becomes a stronger player as you play more! It’s well worth playing a bunch of games just to see this happen. puttering has other Scratch creations on his page, too—like a solver for the Eight Queens puzzle and a Secret Code Machine. Be sure to check those out, too!

Last up, our friend Nalini Joshi recently travelled to a meeting of the Australian Academy of Science, which led to a little number puzzle.

nalini3

What unusual ways of describing a number! Trying to learn about these terms led me to an equally unusual calculator, hosted on the Math Celebrity website. The calculator will show you calculations about the factors of a numbers, as well as lots of categories that your number fits into. Derek Orr of Math Year-Round and I figured out that Nalini’s clues fit with multiple numbers, including 185, 191, and 205. So we needed more clues!

Can you find another number that fits Nalini’s clues? What do you think would be some good additional questions we could ask Nalini? Leave your thoughts in the comments!

unusualcalc

A result from the Number Property Calculator

I hope this post helps you to kick off a great Mathematics Awareness Month. Bon appetit!

2048, 2584, and variations on a theme

Welcome to this week’s Math Munch! It’s a week of mathematical games, including a devilish little game and variations on the theme.

2048

2048

First up, check out this simple little game called 2048. Really, you must go try that game before reading on.

Gabriele Cirulli

Gabriele Cirulli

2048 was created by Gabriele Cirulli, a 20-year old who lives in northern Italy. He was inspired by a couple of very similar games called 1024 and threes, and he wanted to see if he could code a game from scratch. Nice work, Gabriele! (Stay tuned for a Q&A with Gabriele. Coming soon.)

The first time I played, I thought randomly moving the pieces around would work as well as anything, but wow was I wrong. Give it a try and see how far you get. Now watch how this AI (artificial intelligence) computer program plays 2048. You’ll probably notice some patterns that will help you play on your own.

A beautiful chain of powers of two.

A beautiful chain of powers of two.  Can you solve from here?

Did you notice that the smallest tiles are 2’s, and you can only combine matching tiles to create their double? This makes all of the tile values powers of two! (e.g. 2048=2^11) These are the place values for the binary number system! (Did you see our recent post binary?) This has something to do with the long chains that are so useful in solving the game. It’s just like this moment in the marble calculator video.

4, a silly, but interesting little variation

4, a silly, but interesting little variation

If you’re finding 2048 a bit too hard, here’s an easier version.  It’s called 4. It’s a little silly, but it’s also quite interesting. After you make the 4 tile (tying the world record for fewest moves), click “keep going” and see how far you can get. I’ve never been able to get past the 16 tile. Can anyone make the 32? What’s the largest possible tile that can be made in the original 2048 game? Amazingly, someone actually made a 16384 tile!!!

2584, the Fibonacci variant of 2048

2584, the Fibonacci version of 2048

Silly versions aside, there are lots and lots of ways you could alter 2048 to make an interesting game. I wondered about a version where three tiles combined instead of two, but I couldn’t quite figure out how it would work. Can you? (See below.) When I thought about different types of numbers that could combine, I thought of the perfect thing. The Fibonacci numbers!!! 1, 1, 2, 3, 5, 8, 13, 21, … The great thing is that someone else had the same idea, and the game already exists! Take some time now to play 2584, the Fibonacci version of 2048.

2048 and 2584 might seem like very similar games at first, (they’re only 536 apart), but there are some really sneaky and important differences. In the Fibonacci version, a tile doesn’t combine with itself. It has two different kinds of tiles it can match with. I think this makes the game a little easier, but the website says 2584 is more difficult than the original. What do you think?

I have a few more 2048 variations to share with you, as if you didn’t have enough already. These are my favorites:

I hope you dig into some of these games this week. Really think and analyze. If you come up with clever strategies or methods to solve these puzzles, please let us know in the comments. Have a great week, and bon appetit!