Tag Archives: Fibonacci

Math Awareness Month, Hexapawn, and Plane Puzzles

Welcome to this week’s Math Munch!

April is Mathematics Awareness Month. So happy Mathematics Awareness Month! This year’s theme is “Mathematics, Magic, and Mystery”. It’s inspired by the fact that 2014 would have marked Martin Gardner’s 100th birthday.


A few of the mathy morsels that await you this month on mathaware.org!

Each day this month a new piece of magical or mysterious math will be revealed on the MAM site. The mathematical offering for today is a card trick that’s based on the Fibonacci numbers. Dipping into this site from time to time would be a great way for you to have a mathy month.

It is white

It is white’s turn to move. Who will win this Hexapawn game?

Speaking of Martin Gardner, I recently ran across a version of Hexapawn made in the programming language Scratch. Hexapawn is a chess mini-game involving—you guessed it—six pawns. Martin invented it and shared it in his Mathematical Games column in 1962. (Here’s the original column.) The object of the game is to get one of your pawns to the other side of the board or to “lock” the position so that your opponent cannot move. The pawns can move by stepping forward one square or capturing diagonally forward. Simple rules, but winning is trickier than you might think!

The program I found was created by a new Scratcher who goes by the handle “puttering”. On the site he explains:

I’m a dad. I was looking for a good way for my daughters to learn programming and I found Scratch. It turns out to be so much fun that I’ve made some projects myself, when I can get the computer…

puttering's Scratch version of Conway's Game of Life

puttering’s Scratch version of Conway’s Game of Life

Something that’s super cool about puttering’s Hexapawn game is that the program learns from its stratetgy errors and gradually becomes a stronger player as you play more! It’s well worth playing a bunch of games just to see this happen. puttering has other Scratch creations on his page, too—like a solver for the Eight Queens puzzle and a Secret Code Machine. Be sure to check those out, too!

Last up, our friend Nalini Joshi recently travelled to a meeting of the Australian Academy of Science, which led to a little number puzzle.


What unusual ways of describing a number! Trying to learn about these terms led me to an equally unusual calculator, hosted on the Math Celebrity website. The calculator will show you calculations about the factors of a numbers, as well as lots of categories that your number fits into. Derek Orr of Math Year-Round and I figured out that Nalini’s clues fit with multiple numbers, including 185, 191, and 205. So we needed more clues!

Can you find another number that fits Nalini’s clues? What do you think would be some good additional questions we could ask Nalini? Leave your thoughts in the comments!


A result from the Number Property Calculator

I hope this post helps you to kick off a great Mathematics Awareness Month. Bon appetit!

2048, 2584, and variations on a theme

Welcome to this week’s Math Munch! It’s a week of mathematical games, including a devilish little game and variations on the theme.



First up, check out this simple little game called 2048. Really, you must go try that game before reading on.

Gabriele Cirulli

Gabriele Cirulli

2048 was created by Gabriele Cirulli, a 20-year old who lives in northern Italy. He was inspired by a couple of very similar games called 1024 and threes, and he wanted to see if he could code a game from scratch. Nice work, Gabriele! (Stay tuned for a Q&A with Gabriele. Coming soon.)

The first time I played, I thought randomly moving the pieces around would work as well as anything, but wow was I wrong. Give it a try and see how far you get. Now watch how this AI (artificial intelligence) computer program plays 2048. You’ll probably notice some patterns that will help you play on your own.

A beautiful chain of powers of two.

A beautiful chain of powers of two.  Can you solve from here?

Did you notice that the smallest tiles are 2’s, and you can only combine matching tiles to create their double? This makes all of the tile values powers of two! (e.g. 2048=2^11) These are the place values for the binary number system! (Did you see our recent post binary?) This has something to do with the long chains that are so useful in solving the game. It’s just like this moment in the marble calculator video.

4, a silly, but interesting little variation

4, a silly, but interesting little variation

If you’re finding 2048 a bit too hard, here’s an easier version.  It’s called 4. It’s a little silly, but it’s also quite interesting. After you make the 4 tile (tying the world record for fewest moves), click “keep going” and see how far you can get. I’ve never been able to get past the 16 tile. Can anyone make the 32? What’s the largest possible tile that can be made in the original 2048 game? Amazingly, someone actually made a 16384 tile!!!

2584, the Fibonacci variant of 2048

2584, the Fibonacci version of 2048

Silly versions aside, there are lots and lots of ways you could alter 2048 to make an interesting game. I wondered about a version where three tiles combined instead of two, but I couldn’t quite figure out how it would work. Can you? (See below.) When I thought about different types of numbers that could combine, I thought of the perfect thing. The Fibonacci numbers!!! 1, 1, 2, 3, 5, 8, 13, 21, … The great thing is that someone else had the same idea, and the game already exists! Take some time now to play 2584, the Fibonacci version of 2048.

2048 and 2584 might seem like very similar games at first, (they’re only 536 apart), but there are some really sneaky and important differences. In the Fibonacci version, a tile doesn’t combine with itself. It has two different kinds of tiles it can match with. I think this makes the game a little easier, but the website says 2584 is more difficult than the original. What do you think?

I have a few more 2048 variations to share with you, as if you didn’t have enough already. These are my favorites:

I hope you dig into some of these games this week. Really think and analyze. If you come up with clever strategies or methods to solve these puzzles, please let us know in the comments. Have a great week, and bon appetit!

Fullerenes, Fibonacci Walks, and a Fourier Toy

Welcome to this week’s Math Munch!

Stan and James

Stan and James

Earlier this month, neuroscientists Stan Schein and James Gayed announced the discovery of a new class of polyhedra. We’ve often posted about Platonic solids here on Math Munch. The shapes that Stan and James found have the same symmetries as the icosahedron and dodecahedron, and they also have all equal edge lengths.

One of Stan and James's shapes, made of equilateral pentagons and hexagons.

One of Stan and James’s shapes, made of equilateral pentagons and hexagons.

These new shapes are examples of fullerenes, a kind of shape named after the geometer, architect, and thinker Buckminster Fuller. In the 1980s, chemists discovered that molecules made of carbon can occur in polyhedral shapes, both in the lab and in nature. Stan and James’s new fullerenes are modifications of some existing shapes first described in 1937 by Michael Goldberg. The faces of Goldberg’s shapes were warped, not flat, and Stan and James showed that flattening can be achieved—thus turning Goldberg’s shapes into true polyhedra—while also having all equal edge lengths. There’s great coverage of Stan and James’s discovery in this article at Science News and a fascinating survey of the media’s coverage of the discovery by Adam Lore on his blog. Adam’s post includes an interview with Stan!

Next up—how much fun is it to find a fractal that’s new to you? That happened to me recently when I ran across the Fibonacci word fractal.

A portion of a Fibonacci word curve.

A portion of a Fibonacci word curve.

Fibonacci “words”—really just strings of 0’s and 1’s—are constructed kind of like the numbers in the Fibonacci sequence. Instead of adding numbers previous numbers to get new ones, we link up—or “concatenate”—previous words. The first few Fibonacci words are 1, 0, 01, 010, 01001, and 01001010. Do you see how new words are made out of the two previous ones?

Here’s a variety of images of Fibonacci word fractals, and you can find more details about the fractal in this article. The infinite Fibonacci word has an entry at the OEIS, and you can find a Fibonacci word necklace on Etsy. Dale Gerdemann, a linguist at the University of Tübingen, has a whole series of videos that show off patterns created out of Fibonacci words. Here is one of my favorites:

Last but not least this week, check out this groovy applet!

Lucas's applet showing the relationship between epicycles and Fourier series

Lucas’s applet showing the relationship between epicycles and Fourier series

A basic layout of Ptolemy's model, including epicycles.

A basic layout of Ptolemy’s model, including epicycles.

Sometime around the year 200 AD, the astronomer Ptolemy proposed a way to describe the motion of the sun, moon, and planets. Here’s a video about his ideas. Ptolemy relied on many years of observations, a new geometrical tool we call “trigonometry”, and a lot of ingenuity. He said that the sun, moon, and planets move around the earth in circles that moved around on other circles—not just cycles, but epicycles. Ptolemy’s model of the universe was incredibly accurate and was state-of-the-art for centuries.

Joseph Fourier

Joseph Fourier

In 1807, Joseph Fourier turned the mathematical world on its head. He showed that periodic functions—curves with a repeated pattern—can be built by adding together a very simple class of curves. Not only this, but he showed that curves created in this way could have breaks and gaps even though they are built out of continuous curves called “sine” and “cosine”. (Sine and cosine are a part of the same trigonometry that Ptolemy helped to found.) Fourier series soon became a powerful tool in mathematics and physics.

A Fourier series that converges to a discontinuous function.

A Fourier series that converges to a discontinuous function.

And then in the early 21st century Lucas Vieira created an applet that combines and sets side-by-side the ideas of Ptolemy and Fourier. And it’s a toy, so you can play with it! What cool designs can you create? We’ve featured some of Lucas’s work in the past. Here is Lucas’s short post about his Fourier toy, including some details about how to use it.

Bon appetit!

Dots-and-Boxes, Choppy Waves, and Psi Day

Welcome to this week’s Math Munch!

And happy Psi Day! But more on that later.


Click to play Dots-and-Boxes!

Recently I got to thinking about the game Dots-and-Boxes. You may already know how to play; when I was growing up, I can only remember tic-tac-toe and hangman as being more common paper and pencil games. If you know how to play, maybe you’d like to try a quick game against a computer opponent? Or maybe you could play a low-tech round with a friend? If you don’t know how to play or need a refresher, here’s a quick video lesson:

In 1946, a first grader in Ohio learned these very same rules. His name was Elwyn Berlekamp, and he went on to become a mathematician and an expert about Dots-and-Boxes. He’s now retired from being a professor at UC Berkeley, but he continues to be very active in mathematical endeavors, as I learned this week when I interviewed him.

Elwyn Berlekamp

Elwyn Berlekamp

In his book The Dots and Boxes Game: Sophisticated Child’s Play, Elwyn shares: “Ever since [I learned Dots-and-Boxes], I have enjoyed recurrent spurts of fascination with this game. During several of these burst of interest, my playing proficiency broke through to a new and higher plateau. This phenomenon seems to be common among humans trying to master any of a wide variety of skills. In Dots-and-Boxes, however, each advance can be associated with a new mathematical insight!”

Elwyn's booklet about Dots-and-Boxes

Elwyn’s booklet about

In his career, Elywen has studied many mathematical games, as well as ideas in coding. He has worked in finance and has been involved in mathematical outreach and community building, including involvement with Gathering for Gardner (previously).

Elywn generously took the time to answer some questions about Dots-and-Boxes and about his career as a mathematician. Thanks, Elywn! Again, you should totally check out our Q&A session. I especially enjoyed hearing about Elwyn’s mathematical heros and his closing recommendations to young people.

As I poked around the web for Dots-and-Boxes resources, I enjoyed listening to the commentary of Phil Carmody (aka “FatPhil”) on this high-level game of Dots-and-Boxes. It was a part of a tournament held on a great games website called Little Golem where mathematical game enthusiasts from around the world can challenge each other in tournaments.

What's the best move?A Sam Loyd Dots-and-Boxes Puzzle

What’s the best move?
A Dots-and-Boxes puzzle by Sam Loyd.

And before I move on, here are two Dots-and-Boxes puzzles for you to try out. The first asks you to use the fewest lines to saturate or “max out” a Dots-and-Boxes board without making any boxes. The second is by the famous puzzler Sam Loyd (previously). Can you help find the winning move in The Boxer’s Puzzle?

Next up, check out these fantastic “waves” traced out by “circling” these shapes:

Click the picture to see the animation!

Lucas Vieira—who goes by LucasVB—is 27 years old and is from Brazil. He makes some amazing mathematical illustrations, many of them to illustrate articles on Wikipedia. He’s been sharing them on his Tumblr for just over a month. I’ll let his images and animations speak for themselves—here are a few to get you started!

A colored-by-arc-length Archimedean spiral.

A colored-by-arc-length Archimedean spiral.


A sphere-like degenerate torus.

A Koch cube.

A Koch cube.

There’s a great write-up about Lucas over at The Daily Dot, which includes this choice quote from him: “I think this sort of animated illustration should be mandatory in every math class. Hopefully, they will be some day.” I couldn’t agree more. Also, Lucas mentioned to me that one of his big influences in making mathematical imagery has always been Paul Nylander. More on Paul in a future post!

Psi is the 23rd letter in the Greek alphabet.

Psi is the 23rd letter in the Greek alphabet.

Finally, today—March 11—is Psi Day! Psi is an irrational number that begins 3.35988… And since March is the 3rd month and today is .35988… of the way through it–11 out of 31 days—it’s the perfect day to celebrate this wonderful number!

What’s psi you ask? It’s the Reciprocal Fibonacci Constant. If you take the reciprocals of the Fibonnaci numbers and add them add up—all infinity of them—psi is what you get.


Psi was proven irrational not too long ago—in 1989! The ancient irrational number phi—the golden ratio—is about 1.61, so maybe Phi Day should be January 6. Or perhaps the 8th of May—8/5—for our European readers. And e Day—after Euler’s number—is of course celebrated on February 7.

That seems like a pretty good list at the moment, but maybe you can think of other irrational constants that would be fun to have a “Day” for!

And finally, I’m sure I’m not the only one who’d love to see a psi or Fibonacci-themed “Gangham Style” video. Get it?

Bon appetit!


EDIT (3/14/13): Today is Pi Day! I sure wish I had thought of that when I was making my list of irrational number Days…

Sandpiles, Prime Pages, and Six Dimensions of Color

Welcome to this week’s Math Munch!

Four million grains of sand dropped onto an infinite grid. The colors represent how many grains are at each vertex. From this gallery.

We got our first snowfall of the year this past week, but my most recent mathematical find makes me think of summertime instead. The picture to the right is of a sandpile—or, more formally, an Abelian sandpile model.

If you pour a bucket of sand into a pile a little at a time, it’ll build up for a while. But if it gets too tall, an avalanche will happen and some of the sand will tumble away from the peak. You can check out an applet that models this kind of sand action here.

A mathematical sandpile formalizes this idea. First, take any graph—a small one, a medium sided one, or an infinite grid. Grains of sand will go at each vertex, but we’ll set a maximum amount that each one can contain—the number of edges that connect to the vertex. (Notice that this is four for every vertex of an infinite square grid). If too many grains end up on a given vertex, then one grain avalanches down each edge to a neighboring vertex. This might be the end of the story, but it’s possible that a chain reaction will occur—that the extra grain at a neighboring vertex might cause it to spill over, and so on. For many more technical details, you might check out this article from the AMS Notices.

This video walks through the steps of a sandpile slowly, and it shows with numbers how many grains are in each spot.

A sandpile I made with Sergei’s applet

You can make some really cool images—both still and animated—by tinkering around with sandpiles. Sergei Maslov, who works at Brookhaven National Laboratory in New York, has a great applet on his website where you can make sandpiles of your own.

David Perkinson, a professor at Reed College, maintains a whole website about sandpiles. It contains a gallery of sandpile images and a more advanced sandpile applet.

Hexplode is a game based on sandpiles.

I have a feeling that you might also enjoy playing the sandpile-inspired game Hexplode!

Next up: we’ve shared links about Fibonnaci numbers and prime numbers before—they’re some of our favorite numbers! Here’s an amazing fact that I just found out this week. Some Fibonnaci numbers are prime—like 3, 5, and 13—but no one knows if there are infinitely many Fibonnaci primes, or only finitely many.

A great place to find out more amazing and fun facts like this one is at The Prime Pages. It has a list of the largest known prime numbers, as well as information about the continuing search for bigger ones—and how you can help out! It also has a short list of open questions about prime numbers, including Goldbach’s conjecture.

Be sure to peek at the “Prime Curios” page. It contains intriguing facts about prime numbers both large and small. For instance, did you know that 773 is both the only three-digit iccanobiF prime and the largest three-digit unholey prime? I sure didn’t.

Last but not least, I ran across this article about how a software company has come up with a new solution for mixing colors on a computer screen by using six dimensions rather than the usual three.

Dimensions of colors, you ask?

The arithmetic of colors!

Well, there are actually several ways that computers store colors. Each of them encodes colors using three numbers. For instance, one method builds colors by giving one number each to the primary colors yellow, red, and blue. Another systems assigns a number to each of hue, saturation, and brightness. More on these systems here. In any of these systems, you can picture a given color as sitting within a three-dimensional color cube, based on its three numbers.

A color cube, based on the RGB (red, green, blue) system.

If you numerically average two colors in these systems, you don’t actually end up with the color that you’d get by mixing paint of those two colors. Now, both scientists and artists think about combining colors in two ways—combining colored lights and combining colored pigments, or paints. These are called additive and subtractive color models—more on that here. The breakthrough that the folks at the software company FiftyThree made was to assign six numbers to each color—that is, to use both additive and subtractive ideas at the same time. The six numbers assigned to a given number can be thought of as plotting a point in a six-dimensional space—or inside of a hyper-hyper-hypercube.

I think it’s amazing that using math in this creative way helps to solve a nagging artistic problem. To get a feel for why mixing colors using the usual three-coordinate system is such a problem, you might try your hand at this color matching game. For even more info about the math of color, there’s some interesting stuff on this webpage.

Bon appetit!

Partitions, Riddles, and Escher Videos

Welcome to this week’s Math Munch!

Meet James Tanton, one of my very favorite mathematicians. According to his bio, James is “deeply interested in bridging the gap between the mathematics experienced by school students and the creative mathematics practiced and explored by mathematicians.” Me too! Dr. Tanton is an author and math teacher, but I know him best through his internet videos. Some of them cover some pretty advanced mathematics, but this video on partitions and the Fibonacci numbers is very clear and WAY COOL!

o o oo ooo ooooo

Up next, check out Steve Miller’s Math Riddles, a website full of fantastic (you guessed it) math riddles collected by Steve Miller. Steve’s a math professor at Williams College, and according to him, these riddles, “have two very desirable properties: they have an elegant solution, and that solution doesn’t involve advanced mathematics… What you do need is some patience, and a willingness to explore. Don’t be afraid to try something — see where it leads!”

With that in mind, why not give some a try? You can sort the riddles by topic or difficulty, but here a few possible starters:

There are fifteen sticks. Remove six sticks and be left with ten.

Finally, some relaxing videos I’ve found to showcase once again the fantastic artwork of Dutch graphic artist, M.C. Escher. We’ve featured his work before, but I can never get enough.

3 Spheres II by M.C. Escher

“Mathematicians know their subject is beautiful. Escher shows us that it’s beautiful.” That’s a lovely little quote from mathematician Ian Stewart in this short little clip called, The Mathematical Art of M.C. Escher. If you’re up for something more substantial, here’s an hour-long documentary called Metamorphose, which features video of Escher himself hard at work, something I had never seen before! If you end up watching, leave us a comment and let us know what you think.

We’ve also put together a YouTube playlist of every video ever featured on Math Munch, which we will continue to update. If you want to find the coolest math vids on the internet, I’d say that’s a good place to start.

Bon appetit!