Tag Archives: dimensions

Sandpiles, Prime Pages, and Six Dimensions of Color

Welcome to this week’s Math Munch!

Four million grains of sand dropped onto an infinite grid. The colors represent how many grains are at each vertex. From this gallery.

We got our first snowfall of the year this past week, but my most recent mathematical find makes me think of summertime instead. The picture to the right is of a sandpile—or, more formally, an Abelian sandpile model.

If you pour a bucket of sand into a pile a little at a time, it’ll build up for a while. But if it gets too tall, an avalanche will happen and some of the sand will tumble away from the peak. You can check out an applet that models this kind of sand action here.

A mathematical sandpile formalizes this idea. First, take any graph—a small one, a medium sided one, or an infinite grid. Grains of sand will go at each vertex, but we’ll set a maximum amount that each one can contain—the number of edges that connect to the vertex. (Notice that this is four for every vertex of an infinite square grid). If too many grains end up on a given vertex, then one grain avalanches down each edge to a neighboring vertex. This might be the end of the story, but it’s possible that a chain reaction will occur—that the extra grain at a neighboring vertex might cause it to spill over, and so on. For many more technical details, you might check out this article from the AMS Notices.

This video walks through the steps of a sandpile slowly, and it shows with numbers how many grains are in each spot.

A sandpile I made with Sergei’s applet

You can make some really cool images—both still and animated—by tinkering around with sandpiles. Sergei Maslov, who works at Brookhaven National Laboratory in New York, has a great applet on his website where you can make sandpiles of your own.

David Perkinson, a professor at Reed College, maintains a whole website about sandpiles. It contains a gallery of sandpile images and a more advanced sandpile applet.

Hexplode is a game based on sandpiles.

I have a feeling that you might also enjoy playing the sandpile-inspired game Hexplode!

Next up: we’ve shared links about Fibonnaci numbers and prime numbers before—they’re some of our favorite numbers! Here’s an amazing fact that I just found out this week. Some Fibonnaci numbers are prime—like 3, 5, and 13—but no one knows if there are infinitely many Fibonnaci primes, or only finitely many.

A great place to find out more amazing and fun facts like this one is at The Prime Pages. It has a list of the largest known prime numbers, as well as information about the continuing search for bigger ones—and how you can help out! It also has a short list of open questions about prime numbers, including Goldbach’s conjecture.

Be sure to peek at the “Prime Curios” page. It contains intriguing facts about prime numbers both large and small. For instance, did you know that 773 is both the only three-digit iccanobiF prime and the largest three-digit unholey prime? I sure didn’t.

Last but not least, I ran across this article about how a software company has come up with a new solution for mixing colors on a computer screen by using six dimensions rather than the usual three.

Dimensions of colors, you ask?

The arithmetic of colors!

Well, there are actually several ways that computers store colors. Each of them encodes colors using three numbers. For instance, one method builds colors by giving one number each to the primary colors yellow, red, and blue. Another systems assigns a number to each of hue, saturation, and brightness. More on these systems here. In any of these systems, you can picture a given color as sitting within a three-dimensional color cube, based on its three numbers.

A color cube, based on the RGB (red, green, blue) system.

If you numerically average two colors in these systems, you don’t actually end up with the color that you’d get by mixing paint of those two colors. Now, both scientists and artists think about combining colors in two ways—combining colored lights and combining colored pigments, or paints. These are called additive and subtractive color models—more on that here. The breakthrough that the folks at the software company FiftyThree made was to assign six numbers to each color—that is, to use both additive and subtractive ideas at the same time. The six numbers assigned to a given number can be thought of as plotting a point in a six-dimensional space—or inside of a hyper-hyper-hypercube.

I think it’s amazing that using math in this creative way helps to solve a nagging artistic problem. To get a feel for why mixing colors using the usual three-coordinate system is such a problem, you might try your hand at this color matching game. For even more info about the math of color, there’s some interesting stuff on this webpage.

Bon appetit!

3D Printer MArTH, Polyhedra, and Hart Videos

Welcome to this week’s Math Munch!

It’s my turn now to post about how much fun we had at Bridges!  One of the best parts of Bridges was seeing the art on display, both in the galleries and in the lobby where people were displaying and selling their works of art.  We spent a lot of time oogling over the 3D printed sculptures of Henry Segerman.  Henry is a research fellow at the University of Melbourne, in Australia, studying 3-dimensional geometry and topology.  The sculptures that he makes show how beautiful geometry and topology can be.

These are the sculptures that Henry had on display in the gallery at Bridges.  They won Best Use of Mathematics!  These are models of something called 4-dimensional regular polytopes.  A polytope is a geometric object with flat sides – like a polygon in two dimensions or a polyhedron in three dimensions.  4-dimensional polyhedra?  How can we see these in three dimensions?  The process Henry used to make something 4-dimensional at least somewhat see-able in three dimensions is called a stereographic projection.  Mapmakers use stereographic projections to show the surface of the Earth – which is a 3-dimensional object – on a flat sheet of paper – which is a 2-dimensional object.

A stereographic projection of the Earth.

To do a stereographic projection, you first set the sphere on the piece of paper, or plane.  It’ll touch the plane in exactly 1 point (and will probably roll around, but let’s pretend it doesn’t).  Next, you draw a straight line starting at the point at the top of the sphere, directly opposite the point set on the plane, going through another point on the sphere, and mark where that line hits the plane.  If you do that for every point on the sphere, you get a flat picture of the surface of the sphere.  The point where the sphere was set on the plane is drawn exactly where it was set – or is fixed, as mathematicians say.  The point at the top of the sphere… well, it doesn’t really have a spot on the map.  Mathematicians say that this point went to infinity.  Exciting!

A stereographic projection like this draws a 3-dimensional object in 2-dimensions.  The stereographic projection that Henry did shows a 4-dimensional object in 3-dimensions.  Henry first drew, or projected, the vertices of his 4-dimensional polytope onto a 4-dimensional sphere – or hypersphere.  Then he used a stereographic projection to make a 3D model of the polytope – and printed it out!  How beautiful!

Here are some more images of Henry’s 3D printed sculptures.  We particularly love the juggling one.

Henry will be dropping by to answer your questions! So if you have a question for him about his sculptures, the math he does, or something else, then leave it for him in the comments.

Speaking of polyhedra, check out this site of applets for visualizing polyhedra.  You can look at, spin, and get stats on all kinds of polyhedra – from the regular old cube to the majestic great stellated dodecahedron to the mindbogglingly complex uniform great rhombicosidodecahedron.  You can also practice your skills with Greek prefixes and suffixes.

Finally, two Math Munches ago, we told you about some videos made by the mathematical artist George Hart.  He’s the man who brought us the Yoshimoto cube.  And now he’s brought us… Pentadigitation.  In this video, George connects stars, knots, and rubber bands.  Enjoy watching – and trying the tricks!

Bon appetit!

Numberphile, Cube Snakes, and the Hypercube.

Welcome to this week’s Math Munch!

Each one of those pictures takes you to a math video.  Numberphile is a YouTube channel full of fantastic math videos by Brady Haran, each one about a different number.  Is one Googolplex bigger than the universe?  Why does Pac Man end after level 255?  Is 1 a prime number?  Click the numbers to watch the related video.  They also feature James Grime, one of my favorite math people on the internet.

Next up, let’s work on the Saint Ann’s School Problem of the Week.  You can read the fully worded question by following the link, but here it is in short:  If we start in the center, we can snake our way through the 9 small squares of a 3×3 square.  Can we snake our way through the 27 small cubes a 3x3x3 cube?  Can we do it if we start in the middle?

Can we snake our way through the 3x3x3 cube starting in the center?

There’s a new question posted every week (obviously), and if you check the Problem of the Week Archives, you can find more than 4 years of previous questions!  How many do you think we could solve if we did a 24 hour math marathon?

Finally, let’s have a mind-blowing look at higher dimensions.  The problem above is about whether a property of the square (a 2-dimensional object) can be carried over to the cube (its 3D counterpart).  So what is the 4-dimensional version of a cube?  The Hypercube!

The "cube" idea, from 1D to 4D

I’ve heard a lot of people say the 4th dimension is “time” or “duration,” but what would the 5th dimension be?  Well, here’s a video called “Imagining the Tenth Dimension.”  And if you’re hungry for more, there’s a series of 9 math videos called “Dimesions.”  All together it’s 2 amazing hours of math.  You can watch the first chapter online by clicking here.

Bon appetit!