Tag Archives: dimensions

roTopo, de Gua, and Bibi-binary

Welcome to this week’s Math Munch!

Today we’re going to look at a few examples of going “up a dimension”. Our first example is what got me thinking about this theme. It’s a game called roTopo. (If you have trouble getting it to load, try using a different browser.)

 rotopo1.png  rotopo2

Maybe you have played the game B-Cubed. RoTopo is similar—trace through a sequence of squares as they get eliminated one by one. I like B-Cubed because it combines spatial thinking with strategic thinking—planning ahead. Rotopo, with its twists and turns in 3D, stretches a player’s spatial thinking even further. I hope you enjoy giving it a try! Maybe you could design a roTopo level of your own with a drawing or with some blocks.

What else can we find when we look “up a dimension”? Maybe the most famous theorem in all of mathematics is the Pythagorean theorem. There are several ways we might try to take a^2+b^2=c^2 up a dimension. If we start to increase the numbers in the exponents, like a^3+b^3=c^3, we head in the direction of Fermat’s Last Theorem. If we add more terms, like a^2+b^2+c^2=d^2, we can find distances in 3D instead of 2D.

trirectangulartetrahedron_700

A right tetrahedron—the kind needed for de Gua’s Theorem.

And if those aren’t enough to make you go “wow”, then you need to hear about De Gua’s Theorem. The Pythagorean Theorem relates the sides of a right triangle. De Gua’s Theorem relates the faces of a right tetrahedron. The sum of the squares of the areas of the the three “leg” faces is equal to the square of the area of the “hypotenuse” face. So wild! You can read a proof de Gua’s Theorem here. The theorem is named for the 18th-century French mathematician who presented it to the Paris Academy of Sciences in 1783 (although it was known to others before him). De Gua’s Theorem in turn is a special case of a still more general theorem. Once mathematicians start upping dimensions, the sky is the limit!

Last up: Bibi-binary. No, that’s not the way that Justin Timberlake counts—although that funny thought is why I Googled “bibibinary” in the first place. But when I did, this totally silly number system popped up!

notation

How to count in Bibi-binary.

Well, I guess it’s not the number system that’s silly so much, since it’s actually just hexadecimal. Hexadecimal is like binary, but up a couple of dimensions. The system uses sixteen symbols to represent numbers, just as the decimal system uses ten symbols and binary uses two. What makes Bibi-binary silly, then, is not its logical structure but how it sounds.

There are sixteen syllables in Bibi-binary, which are made from combinations of four consonants and four vowels. Three is “hi” and eight is “ko”. If you want to have three 16’s and eight more—56—that would be “hiko”. As another example, 66319344 is “hidihidihidiho”. Bibi-binary was invented in 1971 by a French singer and actor named Boby Lapointe.

I think it would be fun to learn to count in Bibi-binary. Can you believe that I could find zero (“ho”) videos online of people counting in Bibi-binary? I wonder if any of our readers might enjoy making one…

img_colormapHexadecimal is not just fun and games. It’s also used for making codes to stand for colors, especially in making webpages. Most of Math Munch is either 683D29 or 6AB690, would you believe. You can explore using hexadecimal to name colors in this applet.

You can learn lots more about Bibi-binary on the great website dCode, and you’ll also find an applet there that can convert between decimal and Bibi-binary. DCode has lots of tools related to cryptography (get it?) and other math topics, too.

Do you have any favorite examples of math that goes “up a dimension”? We’d love to hear about them in the comments.

Bibi-bi for now! Bon appetit!

jtbibibi

Digital Art, Mastermind, and Pythagoras

Welcome to this week’s Math Munch… on (approximately) Math Munch’s second birthday! Hooray!

Check out this video of mathematical art made by artist Nathan Selikoff:

Cool, right? This piece is called “Beautiful Chaos.” The curves on the screen are made from equations (if you’ve ever graphed a line or a parabola you’ll know what I mean). As the viewer waves her hands around, the equations change– and as the equations change, so do the curves! The result is something that might remind you of the images your computer makes when you play music on it or maybe of something you’d make using a spirograph. All in all, a beautiful and interactive piece of mathematical art.

nathanNathan lives and works as a mathematical artist in Orlando, Florida. As he writes on his website, Nathan uses computer code along with other materials to make art that plays with the mathematical ideas of space, motion, and interaction between objects. To see more of how Nathan does this, check out his giant, interactive marionette or this song that explores the first, second, third, and fourth dimensions:

My school is really lucky to be hosting Nathan this week! We didn’t want any of you, dear readers, to miss out on the excitement, though– so Nathan has kindly agreed to answer your interview questions! Got a question for Nathan? Write it in the box below. He’ll answer seven of your best questions in two weeks!

565px-MastermindNext up, who doesn’t love to play Mastermind? It’s a great combination of logic, patterns, and trickery… but I just hate having to use all those tiny pegs. Well, guess what? You can play it online— no pegs (or opponent) necessary!

As I was playing Mastermind, I started wondering about strategy. What’s the best first guess to make? If I were as smart as a computer, is there a number of guesses in which I could guess any Mastermind code? (This kind of question reminds me of God’s Number and the Rubik’s cube…)

Well, it turns out there is a God’s Number for Mastermind – and that number is five. Just five. If you played perfectly and followed the strategy demonstrated by recreational mathematician Toby Nelson on his website, you could guess ANY Mastermind code in five guesses or less. Toby shares many more interesting questions about Mastermind on his website— I suggest you check it out.

What ARE those irrational numbers, so weird that they get their own bubble??

What ARE those irrational numbers, so weird that they get their own bubble??

Finally, sometime in your mathematical past you may have heard of irrational numbers. These are numbers like the square-root of 2 or pi or e that can’t be written as a fraction– or so people claim. When you start thinking about this claim, however, it may seem strange. There are A LOT of fractions– and none of them equal the square-root of 2? Really? What kind of number is that? It seems like only an irrational person would believe that, at least without proof.

Vi Hart to the rescue! Irrational numbers were encountered long, long ago by the ancient Greek mathematician (and cult leader) Pythagoras– and he didn’t like them much. In this great video, Vi tells all about Pythagoras and the controversial discovery of numbers that aren’t fractions.

If you didn’t follow her explanation of why the square-root of 2 is irrational on your first watch, don’t worry– it’s a complicated idea that’s worth a second (or third or fourth) run-through.

Thanks for a great two years of Math Munch! Bon appetit!

MoMA, Pop-Up Books, and A Game of Numbers

Welcome to this week’s Math Munch!

Thank you so much to everyone who participated in our Math Munch “share campaign” over the past two weeks. Over 200 shares were reported and we know that even more sharing happened “under the radar”. Thanks for being our partners in sharing great math experiences and curating the mathematical internet.

Of course, we know that the sharing will continue, even without a “campaign”. Thanks for that, too.

All right, time to share some math. On to the post!

N_JoshiTo kick things off, you might like to check out our brand-new Q&A with Nalini Joshi. A choice quote from Nalini:

In contrast, doing math was entirely different. After trying it for a while, I realized that I could take my time, try alternative beginnings, do one step after another, and get to glimpse all kinds of possibilities along the way.

By Philippe Decrauzat.

By Philippe Decrauzat.

I hope the math munches I share with you this week will help you to “glimpse all kinds of possibilities,” too!

Recently I went to the Museum of Modern Art (MoMA) in New York City. (Warning: don’t confuse MoMA with MoMath!) On display was an exhibit called Abstract Generation. You can view the pieces of art in the exhibit online.

As I browsed the galley, the sculptures by Tauba Auerbach particularly caught my eye. Here are two of the sculptures she had on display at MoMA:

CRI_244599 CRI_244605

Just looking at them, these sculptures are definitely cool. However, they become even cooler when you realize that they are pop-up sculptures! Can you see how the platforms that the sculptures sit on are actually the covers of a book? Neat!

Here’s a video that showcases all of Tauba’s pop-ups in their unfolding glory. Why do you think this series of sculptures is called [2,3]?

This idea of pop-up book math intrigued me, so I started searching around for some more examples. Below you’ll find a video that shows off some incredible geometric pop-ups in action. To see how you can make a pop-up sculpture of your own, check out this how-to video. Both of these videos were created by paper engineer Peter Dahmen.

Taura Auerbach.

Tauba Auerbach.

Tauba got me thinking about math and pop-up books, but there’s even more to see and enjoy on her website! Tauba’s art gives me new ways to connect with and reimagine familiar structures. Remember our post about the six dimensions of color? Tauba created a book that’s a color space atlas! The way that Tauba plays with words in these pieces reminds me both of the word art of Scott Kim and the word puzzles of Douglas Hofstadter. Some of Tauba’s ink-on-paper designs remind me of the work of Chloé Worthington. And Tauba’s piece Componants, Numbers gives me some new insight into Brandon Todd Wilson’s numbers project.

0108 MM MM-Tauba-Auerbach-large

This piece by Tauba is a Math Munch fave!

For me, both math and art are all about playing with patterns, images, structures, and ideas. Maybe that’s why math and art make such a great combo—because they “play” well together!

Speaking of playing, I’d like to wrap up this week’s post by sharing a game about numbers I ran across recently. It’s called . . . A Game of Numbers! I really like how it combines the structure of arithmetic operations with the strategy of an escape game. A Game of Numbers was designed by a software developer named Joseph Michels for a “rapid” game competition called Ludum Dare. Here’s a Q&A Joseph did about the game.

A Game of Numbers.

A Game of Numbers.

If you enjoy A Game of Numbers, maybe you’ll leave Joseph a comment on his post about the game’s release or drop him an email. And if you enjoy A Game of Numbers, then you’d probably enjoy checking out some of the other games on our games page.

Bon appetit!

PS Tauba also created a musical instrument called an auerglass that requires two people to play. Whooooooa!

Reflection Sheet – MoMA, Pop-Up Books, and A Game of Numbers