Tag Archives: history

Marjorie Rice, Inspired by Math, and Subways

Welcome to this week’s Math Munch!

A few weeks ago, I learned about an amazing woman named Marjorie Rice.  Marjorie is a mathematician – but with a very unusual background.

mrice_picMarjorie had no mathematical education beyond high school.  But, Marjorie was always interested in math.  When her children were all in school, Marjorie began to read about and work on math problems for fun.  Her son had a subscription to Scientific American, and Marjorie enjoyed reading articles by Martin Gardner (of hexaflexagon fame).  One day in 1975, she read an article that Martin Gardner wrote about a new discovery about pentagon tessellations.  Before several years earlier, mathematicians had believed that there were only five different types of pentagons that could tessellate – or cover the entire plane without leaving any gaps.   But, in 1968, three more were discovered, and, in 1975, a fourth was found – which Martin Gardner reported on in his article.

Marjorie's first type of pentagonWhen she read about this, Marjorie became curious about whether she could find her own new type of pentagon that could tile the plane.  So, she got to work.  She came up with her own notation for the relationships between the angles in her pentagons.  Her new notation helped her to see things in ways that professional mathematicians had overlooked.  And, eventually… she found one!  Marjorie wrote to Martin Gardner to tell him about her discovery.  By 1977, Marjorie had discovered three more types of pentagons that tile the plane and her new friend, the mathematician Doris Schattschneider, had published an article about Marjorie’s work  in Mathematics Magazine.

type11There are now fourteen different types of pentagons known to tile the plane… but are there more?  No one knows for sure.  Whether or not there are more types of pentagons that tile the plane is what mathematicians call an open problem.  Maybe you can find a new one – or prove that one can’t be found!

Marjorie has a website called Intriguing Tessellations on which she’s written about her work and posted some of her tessellation artwork.  Here is one of her pentagon tilings transformed into a tessellation of fish.

fishgrid fishsm

By the way, it was Marjorie’s birthday a few weeks ago.  She just turned 90 years old.  Happy Birthday, Marjorie!

wild about math logoNext up, I just ran across a great blog called Wild About Math!  This blog is written by Sol Lederman, who used to work with computers and LOVES math.  My favorite part about this blog is a series of interviews that Sol calls, “Inspired by Math.”  Sol has interviewed about 23 different mathematicians, including Steven Strogatz (who has written two series of columns for the New York Times about mathematics) and Seth Kaplan and Deno Johnson, the producer and writer/director of the Flatland movies.  You can listen to Sol’s podcasts of these interviews by visiting his blog or iTunes.  They’re free – and very interesting!

subway map 2Finally, what New York City resident or visitor isn’t fascinated by the subway system? And what New York City resident or visitor doesn’t spend a good amount of time thinking about the fastest way to get from point A to point B?  Do you stay on the same train for as long as possible and walk a bit?  Or do you transfer, and hope that you don’t miss your train?

chris and matt

Chris and Matt, on the subway.

Well, in 2009, two mathematicians from New York – Chris Solarz and Matt Ferrisi – used a type of mathematics called graph theory to plan out the fastest route to travel the entire New York City subway system, stopping at every station.  They did the whole trip in less than 24 hours, setting a world record!  Graph theory is the branch of mathematics that studies the connections between points or places.  In their planning, Chris and Matt used graph theory to find a route that had the most continuous travel, minimizing transfers, distance, and back-tracking.  You can listen to their fascinating story in an interview with Chris and Matt done by the American Mathematical Society here.

If you’re interested in how graph theory can be used to improve the efficiency of a subway system, check out this article about the Berlin subway system (the U-bahn).  Students and professors from the Technical University Berlin used graph theory to create a schedule that minimized transfer time between trains.  If only someone would do this in New York…

Bon appetit!

Mayans, Calendars, and Ramanujan

Welcome to this week’s Math Munch!

There’s been a lot of fuss recently about the Mayan calendar and the “end of the world.” You’ll be relieved to hear that the world continues to hang in there. In fact, no less an authority than NASA put out a video to help clear up the misinformation surrounding the rolling over of the Mayan calendar.

mayanAll of the doomsday talk did get me researching the Mayan calendar and number system. Check out this page that discusses Mayan numerals and will even count and skip-count for you. Once you’ve got the knack of how to count in the Mayan system, maybe you’ll want to try to decipher the numbers on a Mayan ballcourt marker in this interactive applet.

A cool fact that I learned from that first page is that the Mayans also had another and fancier way of writing down numbers: face glyphs. I found a really comprehensive article by Mark Pitts that describes both face glyphs and the ordinary system, too.

glyphs

The Mayan face glyphs for 0, 1, 2, and 3:
mih, jun, cha’, and ux.

There are many interesting kinds of calendars that human being have developed over the centuries, all with different styles, different mathematical patterns, and different connections to the natural and human worlds. We’ve featured the Cloctal before, but how about some links to some other fun mathy calendars as the new year approaches?

Thursday-January-1

Thursday, January 1—in pennies.

I’m always amazed by what the internet produces when I dream up a search term like “binary calendar.” Perhaps you’ve seen a binary clock before—if not, check out this one—but I was delighted to find several different takes on a binary calendar served up by Google. Juan Osborne designed a binary calendar with all of the dates written out it a big colorful loop. Next, can you figure out the secret to this wooden binary calendar by Ken and Bobbie Ralphs? (It’s a lot like a marble calculator.) And third, here’s a binary calendar that you can make using just twelve pennies, courtesy of exploringbinary.com!

aztec-calendar-wheels

The Aztec tonalpohualli calendar.

There are many more amazing calendars to explore. Maybe you’ll check out Aztec calendar wheels, or find out about anniversaries of mathematicians from this calendar. (Isaac Newton was born on Christmas!) There are even more great calendars to explore at the Calendar Wiki, including some new calendars that have been proposed to “fix” our calendar—the Gregorian calendar—to get rid of traits like uneven months and leap years.

RamanujanSpeaking of anniversaries, this past Saturday was the 125th anniversary of the birth of the great Indian mathematician Srinivasa Ramanujan. Google celebrated the occasion with this doodle on the Indian Google homepage.

srinivasa_ramanujans_125th_birthday-992007-hp

Ramanujan’s story is inspiring and also in some ways tragic. There’s plenty of information about Ramanujan on the web, but you might particularly enjoy reading this recent tribute to him by Dilip D’Souza. One surprising fact I ran across is that one of Ramanujan’s formulas involving pi appeared in (of all places) the movie High School Musical.

formula

One of Ramanujan’s infinite series, which made an appearance in High School Musical.

Ramanujan’s 125th birthday this year became the occasion for India’s first National Mathematics Day. What a cool holiday! Here is a clip from Indian television that shows some Indian students honoring Ramanujan and doing some math.

I can’t understand everything that’s happening in the video, but it’s simply amazing to catch a glimpse of students on the other side of the world being excited about math. Also, you might notice that some of the students are figuring out cube roots of large numbers, while some others are shown figuring out what day of the week certain dates fell on. That’s a neat calendar-related feat that you can read more about here.

And just because it made me giggle, here’s a little bonus video.

Bon appetit!

Harmonious Sum, Continuous Life, and Pumpkins

Welcome to this week’s Math Munch!

We’ve posted a lot about pi on Math Munch – because it’s such a mathematically fascinating little number.  But here’s something remarkable about pi that we haven’t yet talked about. Did you know that pi is equal to four times this? Yup.  If you were to add and subtract fractions like this, for ever and ever, you’d get pi divided by 4.  This remarkable fact was uncovered by the great mathematician Gottfried Wilhelm Leibniz, who is most famous for developing the calculus.  Check out this interactive demonstration from the Wolfram Demonstrations Project to see how adding more and more terms moves the sum closer to pi divided by four.  (We’ve written about Wolfram before.)

I think this is amazing for a couple of reasons.  First of all, how can an infinite number of numbers add together to make something that isn’t infinite???  Infinitely long sums, or series, that add to a finite number have a special name in mathematics: convergent series.  Another famous convergent series is this one:

The second reason why I think this sum is amazing is that it adds to pi divided by four.  Pi is an irrational number – meaning it cannot be written as a fraction, with whole numbers in the numerator and denominator.  And yet, it’s the sum of an infinite number of rational numbers.

In this video, mathematician Keith Devlin talks about this amazing series and a group of mathematical musicians (or mathemusicians) puts the mathematics to music.

This video is part of a larger work called Harmonious Equations written by Keith and the vocal group Zambra.  Watch the rest of them, if you have the chance – they’re both interesting and beautiful.

Next up, Conway’s Game of Life is a cellular automaton created by mathematician John Conway.  (It’s pretty fun: check out this to download the game, and this Munch where we introduce it.)  It’s discrete – each little unit of life is represented by a tiny square.  What if the rules that determine whether a new cell is formed or the cell dies were applied to a continuous domain?  Then, it would look like this:

Looks like a bunch of cells under a microscope, doesn’t it?  Well, it’s also a cellular automaton, devised by mathematician Stephan Rafler from Nurnberg, Germany.  In this paper, Stephan describes the mathematics behind the model.  If you’re curious about how it works, check out these slides that compare the new continuous version to Conway’s model.

Finally, I just got a pumpkin.  What should I carve in it?  I spent some time browsing the web for great mathematical pumpkin carvings.  Here’s what I found.

A pumpkin carved with a portion of Escher’s Circle Limit.

A pumpkin tiled with a portion of Penrose tiling.

A dodecapumpkin from Vi Hart.

I’d love to hear any suggestions you have for how I should make my own mathematical pumpkin carving!  And, if you carve a pumpkin in a cool math-y way, send a picture over to MathMunchTeam@gmail.com!

Bon appetit!