# Pi Digit, Pi Patterns, and Pi Day Anthem

Painting by Renée Othot for Simon Plouffe’s birthday.

Welcome to this week’s Math Munch!

It’s here—the Pi Day of the Century happens on Saturday: 3-14-15!

How will you celebrate? You might check to see if there are any festivities happening in your area. There might be an event at a library, museum, school, or university near you.

(Here are some pi day events in NYC, Baltimore, San Francisco, Philadelphia, Houston, and Charlotte.)

John Conway at the pi recitation contest in Princeton.

There’s a huge celebration here in Princeton—in part because Pi Day is also Albert Einstein’s birthday, and Albert lived in Princeton for the last 22 years of his life. One event involves kids reciting digits of pi and and is hosted by John Conway and his son, a two-time winner of the contest. I’m looking forward to attending! But as has been noted, memorizing digits of pi isn’t the most mathematical of activities. As Evelyn Lamb relays,

I do feel compelled to point out that besides base 10 being an arbitrary way of representing pi, one of the reasons I’m not fond of digit reciting contests is that, to steal an analogy I read somewhere, memorizing digits of pi is to math as memorizing the order of letters in Robert Frost’s poems is to literature. It’s not an intellectually meaningful activity.

I haven’t memorized very many digits of pi, but I have memorized a digit of pi that no one else has. Ever. In the history of the world. Probably no one has ever even thought about this digit of pi.

And you can have your own secret digit, too—all thanks to Simon Plouffe‘s amazing formula.

Simon’s formula shows that pi can be calculated chunk by chunk in base 16 (or hexadecimal). A single digit of pi can be plucked out of the number without calculating the ones that come before it.

Wikipedia observes:

The discovery of this formula came as a surprise. For centuries it had been assumed that there was no way to compute the nth digit of π without calculating all of the preceding n − 1 digits.

Check out some of Simon’s math art!

Simon is a mathematician who was born in Quebec. In addition to his work on the digits of irrational numbers, he also helped Neil Sloane with his Encyclopedia of Integer Sequences, which soon online and became the OEIS (previously). Simon is currently a Trustee of the OEIS Foundation.

There is a wonderful article by Simon and his colleagues David Bailey, Jonathan Borwein, and Peter Borwein called The Quest for Pi. They describe the history of the computation of digits of pi, as well as a description of the discovery of their digit-plucking formula.

According to the Guinness Book of World Records, the most digits that someone has memorized and recited is 67,890. Unofficial records go up to 100,000 digit. So just to be safe, I’ve used an algorithm by Fabrice Bellard based on Simon’s formula to calculate the 314159th digit of pi. (Details here and here.) No one in the world has this digit of pi memorized except for me.

Ready to hear my secret digit of pi? Lean in and I’ll whisper it to you.

The 314159th digit of pi is…7. But let’s keep that just between you and me!

And just to be sure, I used this website to verify the 314159th digit. You can use the site to try to find any digit sequence in the first 200 million digits of pi.

Aziz & Peter’s patterns.

Next up: we met Aziz Inan in last week’s post. This week, in honor of Pi Day, check out some of the numerical coincidences Aziz has discovered in the early digits in pi. Aziz and his colleague Peter Osterberg wrote an article about their findings. By themselves, these observations are nifty little patterns. Maybe you’ll find some more of your own. (This kind of thing reminds me of the Strong Law of Small Numbers.) As Aziz and Peter note at the end of the article, perhaps the study of such little patterns will one day help to show that pi is a normal number.

And last up this week, to get your jam on as Saturday approaches, here’s the brand new Pi Day Anthem by the recently featured John Sims and the inimitable Vi Hart.

Bon appetit!

# Numenko, Turning Square, and Toilet Paper

Welcome to this week’s Math Munch!

Have you ever played Scrabble or Bananagrams? Can you imagine versions of these games that would use numbers instead of letters?

Meet Tom Lennett, who imagined them and then made them!

Tom playing Numenko with his grandkids.

Numemko is a crossnumber game. Players build up number sentences, like 4×3+8=20, that cross each other like in a crossword puzzle. There is both a board game version of Numenko (like Scrabble) and a bag game version (like Banagrams). Tom invented the board game years ago to help his daughter get over her fear of math. He more recently invented the bag game for his grandkids because they wanted a game to play where they didn’t have to wait their turn!

The Multichoice tile.

One important feature of Numenko is the Multichoice tile. Can you see how it can represent addition, subtraction, multiplication, division, or equality?

How would you like to have a Numenko set of your own? Well, guess what—Tom holds weekly Numenko puzzle competitions with prizes! You can see the current puzzle on this page, as well as the rules. Here’s the puzzle at the time of this post—the week of November 3, 2013.

Challenge: replace the Multichoice tiles to create a true number sentence.

I can assure you that it’s possible to win Tom’s competitions, because one of my students and I won Competition 3! I played my first games of Numenko today and really enjoyed them. I also tried making some Numenko puzzles of my own; see the sheet at the bottom of this post to see some of them.

Tom in 1972.

In emailing with Tom I’ve found that he’s had a really interesting life. He grew up in Scotland and left school before he turned 15. He’s been a football-stitcher, a barber, a soldier, a distribution manager, a paintball site operator, a horticulturist, a property developer, and more. And, of course, also a game developer!

Do you have a question you’d like to ask Tom? Send it in through the form below, and we’ll try to include it in our upcoming Q&A!

The level editor.

Say, do you like Bloxorz? I sure do—it’s one of my favorite games! So imagine my delight when I discovered that a fan of the game—who goes by the handle Jz Pan—created an extension of it where you can make your own levels. Awesome, right? It’s called Turning Square, and you can download it here.

(You’ll need to uncompress the file after downloading, then open TurningSquare.exe. This is a little more involved than what’s usual here on Math Munch, but I promise it’s worth it! Also, Turning Square has only been developed for PC. Sorry, Mac fans.)

But wait, there’s more! Turning Square also introduces new elements to Bloxorz, like slippery ice and pyramids you can trip over. It has a random level generator that can challenge you with different levels of difficulty. Finally, Turning Square includes a level solver—it can determine whether a level that you create is possible or not and how many steps it takes to complete.

Jz Pan is from China and is now a graduate student at the Chinese Academy of Sciences, majoring in mathematics and studying number theory. Jz Pan made Turning Square in high school, back in 2008.

Jz Pan has agreed to answer some of your questions! Use the form below to send us some.

If you make a level in Turning Square that you really like, email us the .box file and we can share it with everyone through our new Readers’ Gallery! Here is my level from above, if you want to try it out.

Jz Pan has also worked on an even more ambitious extension of Bloxorz called Turning Polyhedron. The goal is the same, but like the game Dublox, the shape that you maneuver around is different. Turning Polyhderon features several different shapes. Check out this video of it being played with a u-polyhedron!

And if you think that’s wild, check out this video with multiple moving blocks!

Last up this week, have you ever heard that it’s impossible to fold a piece of paper in half more than eight times? Or maybe it’s seven…? Either way, it’s a “fact” that seems to be common knowledge, and it sure seems like it’s true when you try to fold up a standard sheet of paper—or even a jumbo sheet of paper. The stack sure gets thick quickly!

Britney and her 11th fold.

Well, here’s a great story about a teenager who decided to debunk this “fact” with the help of some math and some VERY big rolls of toilet paper. Her name is Britney Gallivan. Back in 2001, when she was a junior in high school, Britney figured out a formula for how much paper she’d need in order to fold it in half twelve times. Then she got that amount of paper and actually did it!

Due to her work, Britney has a citation in MathWorld’s article on folding and even her own Wikipedia article. After high school, Britney went on to UC Berkeley where she majored in Environmental Science. I’m trying to get in touch with Britney for an interview—if you have a question for her, hold onto it, and I’ll keep you posted!

EDIT: I got in touch with Britney, and she’s going to do an interview!

A diagram that illustrates how Britney derived her equation.

The best place to read more about Britney’s story in this article at pomonahistorical.org—the historical website of Britney’s hometown. Britney’s story shows that even when everyone else says that something’s impossible, that doesn’t mean you can’t be the one to do it. Awesome.

I hope you enjoy trying some Numenko puzzles, tinkering with Turning Square, and reading about Britney’s toilet paper adventure.

Bon appetit!

PS Want to see a video of some toilet-paper folding? Check out the very first “family math” video by Mike Lawler and his kids.

Reflection Sheet – Numenko, Turning Square, and Toilet Paper

# TesselManiac, Zeno’s Paradox, and Platonic Realms

Welcome to this week’s Math Munch!

Before we begin, we’d like to thank all of you who have checked out the site in the past week. Since we’ve kicked off our share campaign, we’ve had so many new visitors and heard from many of them, too! Reading your feedback – whether a recommendation, some praise, a question, or just a brief, “Hello!” – brings us great joy and helps us to know that you all are out there.

Whether you’re a regular reader or visiting the site for the first time, we’d like to ask you for a little favor. If you see some math you like, share it with someone who you think would like it, too! Do you love the burst of excitement that you get from reading about a new mathematical idea, seeing an original piece of math artwork, or trying out a new game? Do you know someone who would love that, too? Then tell them about Math Munch – we’d love to spread the joy.

If you enjoy Math Munch, join in our “share campaign” this week.

You can read more about the share campaign here. There are lots of ways to participate, and you can let us know about your sharing through this form. We’d love to see the share total rise up to 1000 over the course of the next week.

Now for the post!

***

This beautiful tessellated wooden box was made by computer scientist and mathematical artist Kevin Lee. I met Kevin two weeks ago at the MOVES conference (which Justin and Paul have both written about already). Kevin teaches computer science at Normandale Community College in Minnesota. He makes woodcut tessellations (which won an award for the “Best Textile, Sculpture, or Other Medium” at the Joint Mathematics Meetings art exhibition this year!). He’s also used a combination of his knowledge of computer science and his love of Escher-type tessellations to make software that helps you create tessellations. His new software, TesselManiac!, is due out soon (watch this short movie Kevin made about it for the Bridges conference), but you can download an older version of the software here and play a preview version of The Flipping Tile Game.

To play this game, you must fill in an outline of a tessellation with the piece given. You can use any of four symmetry motions – translation (or shift), rotation, reflection, or glide reflection (which reflects the tile and then translates it along a line parallel to the line of reflection). You get points for each correct tile placed (and lose points if you have to delete). Translations are the simplest, and only give you 5 points each. Reflections are the most difficult – you get 20 points for each one used!

While you’re downloading The Flipping Tile Game, try one of Kevin’s Dot-to-Dot puzzles. These are definitely not your typical dot-to-dot. Only the portion of the image corresponding to one tile in the tessellation is numbered. Once you figure out the shape of that single tile, you have to figure out how to number the rest of the puzzle!

Lucky for us, Kevin has agreed to answer some questions about his life and work as a math artist and computer scientist. Leave a question for Kevin here. (We’ll take questions for the next two weeks.)

I’ve recently been thinking about a paradox that has puzzled mathematicians for centuries. Maybe you’ve heard of it. It’s one of the ancient Greek philosopher Zeno‘s paradoxes of motion, and it goes like this: Achilles (a really fast Greek hero) and a tortoise are going to run a race. Achilles agrees to give the tortoise a head-start, because the tortoise is so slow. Achilles then starts to run. But as Achilles catches up with the tortoise, the tortoise moves a little further. So the tortoise is still ahead. And as Achilles moves to catch up again, the tortoise moves even further! Sounds like Achilles will never catch up to the tortoise, let alone pass him… But that doesn’t make sense…

Will Achilles lose the race??? Check out this great video from Numberphile that explains both the paradox and the solution.

While I was looking for information about this paradox, I stumbled across a great math resource site called Platonic Realms. The homepage of this site has a daily historical fact, mathematical quote, and puzzle.

The site hosts a math encyclopedia with explanations of all kinds of math terms and little biographies of famous mathematicians. You can also read “mini-texts” about different mathematical topics, such as this one about M. C. Escher (the inspiration behind the art at the beginning of this post!) or this one about coping with math anxiety.

I hope we here at Math Munch have given you something to tantalize your mathematical taste buds this week! If so, we’d love it if you would pass it along.

Thank you for reading, and bon appetit!

P.S. – We’ve posted a new game, suggested to us by one of our readers! It’s an online version of Rush Hour. Check it out!

# Sandpiles, Prime Pages, and Six Dimensions of Color

Welcome to this week’s Math Munch!

Four million grains of sand dropped onto an infinite grid. The colors represent how many grains are at each vertex. From this gallery.

We got our first snowfall of the year this past week, but my most recent mathematical find makes me think of summertime instead. The picture to the right is of a sandpile—or, more formally, an Abelian sandpile model.

If you pour a bucket of sand into a pile a little at a time, it’ll build up for a while. But if it gets too tall, an avalanche will happen and some of the sand will tumble away from the peak. You can check out an applet that models this kind of sand action here.

A mathematical sandpile formalizes this idea. First, take any graph—a small one, a medium sided one, or an infinite grid. Grains of sand will go at each vertex, but we’ll set a maximum amount that each one can contain—the number of edges that connect to the vertex. (Notice that this is four for every vertex of an infinite square grid). If too many grains end up on a given vertex, then one grain avalanches down each edge to a neighboring vertex. This might be the end of the story, but it’s possible that a chain reaction will occur—that the extra grain at a neighboring vertex might cause it to spill over, and so on. For many more technical details, you might check out this article from the AMS Notices.

This video walks through the steps of a sandpile slowly, and it shows with numbers how many grains are in each spot.

A sandpile I made with Sergei’s applet

You can make some really cool images—both still and animated—by tinkering around with sandpiles. Sergei Maslov, who works at Brookhaven National Laboratory in New York, has a great applet on his website where you can make sandpiles of your own.

David Perkinson, a professor at Reed College, maintains a whole website about sandpiles. It contains a gallery of sandpile images and a more advanced sandpile applet.

Hexplode is a game based on sandpiles.

I have a feeling that you might also enjoy playing the sandpile-inspired game Hexplode!

Next up: we’ve shared links about Fibonnaci numbers and prime numbers before—they’re some of our favorite numbers! Here’s an amazing fact that I just found out this week. Some Fibonnaci numbers are prime—like 3, 5, and 13—but no one knows if there are infinitely many Fibonnaci primes, or only finitely many.

A great place to find out more amazing and fun facts like this one is at The Prime Pages. It has a list of the largest known prime numbers, as well as information about the continuing search for bigger ones—and how you can help out! It also has a short list of open questions about prime numbers, including Goldbach’s conjecture.

Be sure to peek at the “Prime Curios” page. It contains intriguing facts about prime numbers both large and small. For instance, did you know that 773 is both the only three-digit iccanobiF prime and the largest three-digit unholey prime? I sure didn’t.

Last but not least, I ran across this article about how a software company has come up with a new solution for mixing colors on a computer screen by using six dimensions rather than the usual three.

The arithmetic of colors!

Well, there are actually several ways that computers store colors. Each of them encodes colors using three numbers. For instance, one method builds colors by giving one number each to the primary colors yellow, red, and blue. Another systems assigns a number to each of hue, saturation, and brightness. More on these systems here. In any of these systems, you can picture a given color as sitting within a three-dimensional color cube, based on its three numbers.

A color cube, based on the RGB (red, green, blue) system.

If you numerically average two colors in these systems, you don’t actually end up with the color that you’d get by mixing paint of those two colors. Now, both scientists and artists think about combining colors in two ways—combining colored lights and combining colored pigments, or paints. These are called additive and subtractive color models—more on that here. The breakthrough that the folks at the software company FiftyThree made was to assign six numbers to each color—that is, to use both additive and subtractive ideas at the same time. The six numbers assigned to a given number can be thought of as plotting a point in a six-dimensional space—or inside of a hyper-hyper-hypercube.

I think it’s amazing that using math in this creative way helps to solve a nagging artistic problem. To get a feel for why mixing colors using the usual three-coordinate system is such a problem, you might try your hand at this color matching game. For even more info about the math of color, there’s some interesting stuff on this webpage.

Bon appetit!

# Harmonious Sum, Continuous Life, and Pumpkins

Welcome to this week’s Math Munch!

We’ve posted a lot about pi on Math Munch – because it’s such a mathematically fascinating little number.  But here’s something remarkable about pi that we haven’t yet talked about. Did you know that pi is equal to four times this? Yup.  If you were to add and subtract fractions like this, for ever and ever, you’d get pi divided by 4.  This remarkable fact was uncovered by the great mathematician Gottfried Wilhelm Leibniz, who is most famous for developing the calculus.  Check out this interactive demonstration from the Wolfram Demonstrations Project to see how adding more and more terms moves the sum closer to pi divided by four.  (We’ve written about Wolfram before.)

I think this is amazing for a couple of reasons.  First of all, how can an infinite number of numbers add together to make something that isn’t infinite???  Infinitely long sums, or series, that add to a finite number have a special name in mathematics: convergent series.  Another famous convergent series is this one:

The second reason why I think this sum is amazing is that it adds to pi divided by four.  Pi is an irrational number – meaning it cannot be written as a fraction, with whole numbers in the numerator and denominator.  And yet, it’s the sum of an infinite number of rational numbers.

In this video, mathematician Keith Devlin talks about this amazing series and a group of mathematical musicians (or mathemusicians) puts the mathematics to music.

This video is part of a larger work called Harmonious Equations written by Keith and the vocal group Zambra.  Watch the rest of them, if you have the chance – they’re both interesting and beautiful.

Next up, Conway’s Game of Life is a cellular automaton created by mathematician John Conway.  (It’s pretty fun: check out this to download the game, and this Munch where we introduce it.)  It’s discrete – each little unit of life is represented by a tiny square.  What if the rules that determine whether a new cell is formed or the cell dies were applied to a continuous domain?  Then, it would look like this:

Looks like a bunch of cells under a microscope, doesn’t it?  Well, it’s also a cellular automaton, devised by mathematician Stephan Rafler from Nurnberg, Germany.  In this paper, Stephan describes the mathematics behind the model.  If you’re curious about how it works, check out these slides that compare the new continuous version to Conway’s model.

Finally, I just got a pumpkin.  What should I carve in it?  I spent some time browsing the web for great mathematical pumpkin carvings.  Here’s what I found.

 A pumpkin carved with a portion of Escher’s Circle Limit. A pumpkin tiled with a portion of Penrose tiling. A dodecapumpkin from Vi Hart.

I’d love to hear any suggestions you have for how I should make my own mathematical pumpkin carving!  And, if you carve a pumpkin in a cool math-y way, send a picture over to MathMunchTeam@gmail.com!

Bon appetit!

# Knots, Torus Games, and Bagels

Welcome to this week’s Math Munch!

The things we have lined up for you this week have to do with a part of math called topology.  Topology is like geometry in many ways, except the shapes you study aren’t rigid.  Instead, you can twist, stretch, squish, and generally deform them in any way you like, so long as you don’t rip any holes or attach things that weren’t already attached.  One of the reasons why topology is interesting is that you get to play with new and fascinating shapes, like…

… knots!  This nifty site, Knot Theory Online, is full of interesting information about the study of mathematical knots and its history and applications.  For some basic information, check out the introduction to knots page.  It talks about what a knot is, mathematically speaking, and some ways that mathematicians answer the most important question in knot theory: is this knot the unknot?  The site also has some fun games in which you can play with transforming one knot into another.  Here’s my favorite: The Hunt for the Elusive Trefoil Knot.

Knots can also be works of art – and this site, Knot Plot, showcases artistic knots at their best.  Here are some images of beautiful decorative knots.

A really cool thing about knot theory is that it is a relatively new area of mathematical research – which means that there are many unsolved knot theory problems that a person without a lot of math training could attempt!  Here’s a page of “approachable open problems in knot theory,” compiled by knot theorist and Williams College professor Colin Adams.

One of a topologist’s favorite objects to study is one that you might encounter at breakfast – the torus, or donut (or bagel).  To get a sense for what makes a torus topologically interesting and for what life might be like if you lived on a torus (instead of a sphere, a topologically different surface), check out Torus Games.  Torus Games was created by mathematician Jeff Weeks.  You can play games that you’d typically play on a plane, in flat space – such as Tic-Tac-Toe, chess, and pool – but on a torus (or a Klein bottle) instead!

A maze – on a torus!

By the way, you can find Torus Games and other cool, free, downloadable math software on our new page – Free Math Software.  You’ll find links to other software that we love to use – such as Scratch and GeoGebra, and another program by Jeff Weeks called Curved Spaces.

All this talk of tori making you hungry?  Go get your own tasty torus (bagel), and try this fun trick to slice your bagel into two linked halves.  This topologically delicious breakfast problem was created by mathematical artist George Hart.

Bon appetit!  (Literally, this time.)

# Line Fractals, Knitting, and 3-D Design

Welcome to this week’s Math Munch!

Take a look at this beautiful line drawing:

This is called, “Towards Pi 3.141552779 Hand-Drawn,” and it’s by mathematician and artist Jason Padgett.  Jason wasn’t always a mathematician or an artist.  In fact, it was only after a severe head injury that Jason suddenly found that he “saw” fractals and other geometric images in mathematical and scientific ideas.  Jason is interested in limits.  The picture above, for example, is Jason’s artistic interpretation of a limit that approaches pi.  If you draw a circle with radius 1 and make polygons inside of it using secants for their sides, the areas of the polygons get closer and closer to pi as the number of sides increases – but always stay less than pi.  If you take that same circle and make polygons around it using tangents for their sides, the areas of the polygons also get closer and closer to pi as the number of sides increases – but always stay larger than pi.  Jason tried to draw the way that those sequences “trap pi” in this picture.

I think it’s really amazing that Jason draws these by hand.  Here’s some more of Jason’s artwork, and a video of Jason drawing “Towards Pi 3.141552779 Hand-Drawn.”

 Space Time Sine Cosine and Tangent Waves The Power of Pi Wave Particle Duality

Next, did you like Sondra Eklund’s sweater from last week?  Did it inspire you to do some mathematical knitting of your own?  If so, check out the website Woolly Thoughts.

Woolly Thoughts is run by “mathekniticians” Pat Ashforth and Steve Plummer who love to do, teach, and share math with others through their knitting.  They’ve designed many beautiful and mathematical afghan and pillow patterns, and some patterns for interesting math toys.  Here are some of my favorites:

 The “Finite Field” afghan is a color-coded addition table using binary. The “Fibo-Optic” afghan is made to look like a flying cube using side-lengths based on the Fibonacci sequence.

Finally, one of the programs featured in the new Math Art Tools link is TinkerCAD.  TinkerCAD is a program you can use to make 3D designs – just because, or to print out with a 3D printer!

TinkerCAD has three parts: Discover, Learn, and Design.  In the Discover section, you can browse things that other tinkerers have made and download them to print yourself.  There are some really cool things out there, like this Father’s Day mug made by Fabricatis and this sail boat made by Klyver Boys.

Next, in the Learn section, you can play different “quests” to hone your TinkerCAD skills.  Finally, in the Design section, you can make your own thing!  TinkerCAD is really intuitive to use.  The TinkerCAD tutorial video is really helpful if you want to learn how to use TinkerCAD – as are the quests.

Stay tuned for pictures of some TinkerCAD things made by friends of Math Munch!

Bon appetit!