Tag Archives: big numbers

SET, Ptolemy, and Malin Christersson

Welcome to this week’s Math Munch!

To set up the punchline: if you haven’t played the card game SET before, do yourself a favor and go try it out now!

(Or if you prefer, here’s a video tutorial.)


Are there any sets to be found here?

(And even if you have played before, go ahead and indulge yourself with a round. You deserve a SET break.ūüôā )

Now, we’ve shared about SET before, but recently there has been some very big SET-related news. Although things have been¬†quieter around Georgia Tech since¬†summer has started, there has been a buzz both here and around the internet about a¬†big breakthrough by¬†Vsevolod Lev, P√©ter P√°l Pach, and Georgia Tech professor¬†Ernie Croot. Together they have discovered a new approach¬†to estimate how big a SET-less collection of SET cards can be.

In SET there are a total of 81 cards, since each card expresses one combination of four different characteristics (shape, color, filling, number) for which there are three possibilities each. That makes 3^4=81 combinations of characteristics. Of these 81 cards, what do you think is the most cards we could lay out without a SET appearing? This is not an easy problem, but it turns out the answer is 20. An even harder problem, though, is asking the same question but for bigger decks where there are five or ten or seventy characteristics‚ÄĒand so 3^5 or 3^10 or 3^70 cards. Finding the exact answer to these larger problems would be very, very hard, and so it would be nice if we could at least estimate how big of a collection of¬†SET-less cards we could make in each case.¬†This is called the cap set problem, and Vsevolod,¬†P√©ter, and Ernie found a much, much better way to estimate the answers than what was previously known.

To find out more on the background of the cap set problem, check out this “low threshold, high ceiling” article by Michigan grad student Charlotte Chan. And I definitely encourage you to check out this article by¬†Erica Klarreich in Quanta Magazine for more details about the breakthrough and for reactions from the mathematical community. Here’s a choice quote:

Now, however, mathematicians have solved the cap set problem using an entirely different method ‚ÄĒ and in only a few pages of fairly elementary mathematics. ‚ÄúOne of the delightful aspects of the whole story to me is that I could just sit down, and in half an hour I had understood the proof,‚ÄĚ Gowers said.

(For further wonderful math articles, you’ll want to visit Erica’s website.)

 Vsevolod  Peter  Ernie
 Charlotte  Erica  Marsha

These are photos of Vsevolod, Péter, Ernie, Charlotte, Erica, and the creator of SET, geneticist Marsha Jean Falco.

Ready for more? Earlier this week, I ran across this animation:


It shows two ways of modeling the motions of the sun and the planets in the sky. On the left is a heliocentric model, which means the sun is at the center. On the right is a geocentric model, which means the earth is at the center.


Around 250 BC, Aristarchus calculated the size of the sun, and decided it was too big to revolve around the earth!

Now, I’m sure you’ve heard that the sun is at the center of the solar system, and that the earth and the planets revolve around the sun. (After all, we call it a “solar system”, don’t we?) But it took a long time for human beings to decide that this is so.

I have to¬†confess: I have a soft spot for the geocentric model. I ran across the animation in a Facebook group of some graduates of St. John’s College, where I studied as an undergrad. We spent a semester or so reading Ptolemy’s Almagest‚ÄĒliterally, the “Great Work”‚ÄĒon the geocentric model of the heavens. It is an incredible work of mathematics and of natural science. Ptolemy calculated the most accurate table of chords‚ÄĒa variation on a table of the sine function‚ÄĒthat existed in his time and also proved intricate facts about circular motion. For example, here’s a video that shows that the eccentric and epicyclic models of solar motion are equivalent. What’s really remarkable is that not only does Ptolemy’s system account for the motions of the heavenly bodies,¬†it actually gave better predictions of the locations of the planets than Copernicus’s heliocentric system when the latter first debuted in the 1500s. Not bad for something¬†that was “wrong”!

Here are Ptolemy and Copernicus’s ways of explaining how Mars appears to move in the sky:

ptolemy Copernicus_Mars

Maybe you would like to learn more about the history of models of the cosmos? Or maybe you would like tinker with a world-system of your own? You might notice that the circles-on-circles of Ptolemy’s model are just like a spirograph or a roulette. I wonder what would happen if we made the orbit circles in much different proportions?


Malin, tiled hyperbolically.

Now, I was very glad to¬†take this stroll down memory lane back to my college studies, but little did I know that I was taking a second stroll as well: the person who created this great animation, I had run across several other pieces of her work before! Her name is Malin Christersson and she’s a PhD student in math education in Sweden. She is also a computer scientist who previously taught high school and also teaches many people about creating math in GeoGebra. You can try out her many GeoGebra applets here. Malin also has a Tumblr where she posts gifs from the applets she creates.

About a year ago I happened¬†across an applet that lets you create art in the style of artist (and superellipse creator) Piet Mondrian. But it also inverts your art‚ÄĒreflects it across a circle‚ÄĒso that you can view your own work from a totally different perspective.¬†Then just a few months later I delighted in finding another¬†applet where you can tile the hyperbolic plane with an image of your choice. (I used one tiling I produced as my Twitter photo for a while.)



tiling (4)

Me, tiled hyperbolically.

And now come to find out these were both made by Malin, just like the astronomy animation above! And Malin doesn’t stop there, no, no. You should see her fractal applets depicting Julia sets. And her¬†Rolling Hypocycloids and Epicycloids¬†are can’t-miss. (Echoes of Ptolemy there, yes?!)

And please don’t miss out on Malin’s porfolio¬†of applets made in the programming language Processing.

It’s a good feeling to finally put the pieces together and to have a new mathematician, artist, and teacher who inspires me!

I hope¬†you’ll find some inspiration, too. Bon appetit!

George Washington, Tessellation Kit, and Langton’s Ant

Welcome to this week’s Math Munch!

002What will you do with your math notebook at the end of the school year? Keep it as a reference for the future? Save it as a keepsake? Toss it out? Turn it into confetti? Find your favorite math bits and doodles and make a collage?

Lucky for us, our first president kept his math notebooks from when he was a young teenager. And though it’s passed through many hands over the years‚ÄĒincluding those of Chief Justice John Marshall and the State Department‚ÄĒit has survived to this day. That’s right. You can check out¬†math problems and definitions copied out¬†by George Washington over 250 years ago. They’re all available online at the Library of Congress website.

Or at least most of them. They seem to be out of order, with a few pages missing!

Fred Rickey

That’s what mathematician and math history detective Fred¬†Rickey has figured out. Fred has long been a fan of math history. Since he retired from the US Military Academy in 2011, Fred has been able to pursue his historical interests more actively. Fred is¬†currently studying the Washington cypher books to help¬†prepare a biography about Washington’s boyhood¬†years.¬†You can see two papers that Fred has co-authored about Washington’s mathematics here.

Fred writes:

Washington valued his cyphering books and kept them as a ready source of reference for the rest of his life. This would seem to be particularly true of his surveying studies.

Surveying played a big role in Washington’s career, and math is important for today’s surveyors, too.

Do you have a question for Fred about the math that George Washington learned? Send it to us and we’ll try to include it in our upcoming Q&A with Fred!

A tessellation, by me!

A tessellation, by me!

Next up, check out this Tessellation Kit. It was made by Nico Disseldorp, who also made the geometry construction game we featured recently. The kit is a lot of fun to play with!

One thing I like about this Tessellation Kit is how it’s discrete‚ÄĒit deals with large chunks¬†of the screen at a time. This restriction make me want to explore, because it give me the feeling that there are only so many possible combinations.

I’m also curious about¬†the URL for this applet‚ÄĒthe web address for it. Notice how it changes whenever you make a change in your tessellation? What happens when you change some of those letters and numbers‚ÄĒlike¬†bababaaaa¬†to¬†bababcccc? Interesting…

For another fun applet, check out this doodling ant:

Langton's Ant.

Langton’s Ant.

Langton’s Ant is following a simple set of rules. In a white square? Turn right. In a black square? Turn left. And switch the color of the square that you leave. This ant is an example of a cellular automaton, and we’ve seen several of these here on Math Munch before. This one is different from others because it changes just one square at a time, and not the whole screen at once.

Breaking out of chaos.

Breaking out of chaos.

There’s a lot that is unknown about Langton’s ant, and it has some mysterious behavior. For example, after thousands of steps of seeming randomness, the ant goes into a steady pattern, paving a highway out to infinity. What gives? Well, you can try out some patterns of your own in the applets on the Serendip website.¬†(previously).¬†And you can read some amusing tales‚ÄĒant-ecdotes?‚ÄĒabout Langton’s ant in this lovely article.

DSC03509I learned about Langton’s Ant from Richard Evan Schwartz in our new Q&A. In the interview, Rich¬†shares his thoughts about computers, art, what to pursue in life, and of course: Really Big Numbers.

Check it out, and bon appetit!

Zippergons, High Fashion, and Really Big Numbers

Welcome to this week’s Math Munch!

Bill Thurston

Bill Thurston

Recently I attended a conference in memory of Bill¬†Thurston. Bill was one of the most imaginative and influential mathematicians of the second half of the twentieth century. He worked with many mathematicians on projects and had many students before he passed away¬†in the fall of 2012 at the age of 65. You can read Bill’s¬†obituary in the New York Times here.

Bill worked where¬†geometry and topology meet. In fact, Bill throughout his career showed that there are rich connections between the two fields that no one thought was possible. For instance, it’s an amazing fact that every surface‚ÄĒno matter how bumpy or holey or twisted‚ÄĒcan be given a nice, symmetric curvature. A uniform geometry, it’s called. This was proven by Henri Poincar√© in 1907. It was thought that 3D spaces would be far too complicated to be behave according to a similar rule. But Bill had a vision and a conjecture‚ÄĒthat every 3D space can be divided into parts that can be given uniform geometries. To give you a flavor of these ideas, here’s a video of Bill describing some¬†unusual and fabulous 3D spaces.

Any surface can be given a nice, symmetric geometry.

Any surface can be given a uniform geometry. Even a bunny. Another video.

As you can probably tell, visualizing and experiencing math was very important to Bill. He even taught a course with John Conway called Geometry and the Imagination. Bill¬†often used computers to help himself see the math he was thinking about, and he enjoyed making hands-on models as well. Beginning in spring of 2010, Bill and¬†Kelly Delp of Ithaca College worked out an idea. Usually all of the curving or turning of a polyhedron is concentrated at the vertices. Most of a cube is flat, but there’s a whole lot of pinch at the corners. What if you could spread that pinching out along the edges? And if you could, wouldn’t longer and perhaps wiggly edges help spread it even better? Yes and yes! You can see some examples of these “zippergons” that Bill and Kelly imagined and made in this gallery and read about them¬†in their Bridges article.

A zippergon based on an octahedron.

A paper octahedron zippergon.


A foam icosadodecahedron zippergon.

One of Bill’s last collaborations happened not with a mathematician but with a fashion designer. Dai Fujiwara, a noted creator of high fashion in Tokyo, got inspired by some of Bill’s¬†illustrations. In collaboration with Bill, Dai created eight outfits. Each one was based on one of the eight Thurston geometries. You can see the result of their work together in this video and read more about it in this article.

Isn’t it amazing how creative minds¬†in very different fields can learn from each other and create something together?

Richard Evan Schwartz (self-portrait)

Richard Evan Schwartz (self-portrait)

Richard Evan Schwartz was one of the speakers at the conference honoring Bill. Rich studied with Bill at Princeton and now is a math professor at Brown University.

Like Bill, Rich’s work can be highly visual and playful, and he often taps the power of computers to visualize and analyze mathematical structures. There’s lots to explore on Rich’s website. Check out these applets he has made, including ones on Poncelet’s Porism, the Euclidean algorithm (previously), and a game called Lucy & Lily (JAVA required). I love how Rich shares some of his earliest applet-making efforts, like Click On A Triangle To Change Its Color. It’s motivating¬†to see that even an accomplished mathematician like Rich began with the basics of programming‚ÄĒa place where any of us can start!

Screen Shot 2014-07-23 at 2.54.37 AMOn Rich’s site you’ll also find information about his project¬†“Counting on Monsters“. And you should definitely make time to read some of the conversations that Rich has had with his five-year-old daughter Lucy.

Recently Rich published a wonderful new book for kids called “Really Big Numbers“. It is a colorful romp through larger and larger numbers and layers of abstraction, with evocative images to light the way. Check out the trailer for “Really Big Numbers”¬†below!

Do you have a question for Rich‚ÄĒabout his book, or about the math that he does, or about his life, or about Bill? Then send it to us in the form below and we’ll try to include it in our interview with him!

EDIT: Thanks for all your questions! Our Q&A with Rich will be posted soon.

Diana and Rich

Diana and Rich

Diana and Bill

Diana and Bill

Bill taught Rich, and Rich in turn taught Diana Davis, whose Dance Your PhD video we featured a while back. In fact, Bill’s influence on mathematics can be seen throughout many of our posts on Math Munch. Bill collaborated with Daina Taimina on hyperbolic crochet projects. He taught Jeff Weeks and helped inspire the games and software Jeff created.¬†Bill oversaw the production of the film Outside In¬†about the eversion of a sphere. He even coined the mathematical term “pair of pants.”

Bill’s¬†vision of mathematics will live on in many people. That could include you, if you’d like. It’s just as Bill wrote:

In short, mathematics only exists in a living community of mathematicians that spreads understanding and breaths life into ideas both old and new.

Bon appetit!

Numenko, Turning Square, and Toilet Paper

Welcome to this week’s Math Munch!

Have you ever played Scrabble or Bananagrams? Can you imagine versions of these games that would use numbers instead of letters?

Meet Tom Lennett, who imagined them and then made them!

Tom playing Numenko with his grandkids.

Tom playing Numenko with his grandkids.

Numemko is a crossnumber game. Players build up number sentences, like 4×3+8=20, that cross each other like in a crossword puzzle. There is both a board game version of Numenko (like Scrabble) and a bag game version (like Banagrams). Tom invented the board game years ago to help his daughter get over her fear of math. He more recently invented the bag game for his grandkids because they wanted a game to play where they didn’t have to wait their turn!

The Multichoice tile.

The Multichoice tile.

One important feature of Numenko is the Multichoice tile. Can you see how it can represent addition, subtraction, multiplication, division, or equality?

How would you like to have a Numenko set of your own? Well, guess what—Tom holds weekly Numenko puzzle competitions with prizes! You can see the current puzzle on this page, as well as the rules. Here’s the puzzle at the time of this post—the week of November 3, 2013.

Can you replace the Multichoice tiles to create a true number sentence?

Challenge: replace the Multichoice tiles to create a true number sentence.

I can assure you that it’s possible to win Tom’s competitions, because one of my students and I won Competition 3! I played my first games of Numenko today and really enjoyed them. I also tried making some Numenko puzzles of my own; see the sheet at the bottom of this post to see some of them.

Tom in 1972.

Tom in 1972.

In emailing with Tom I’ve found that he’s had a really interesting life. He grew up in Scotland and left school before he turned 15. He’s been¬†a football-stitcher, a barber, a soldier, a distribution manager, a paintball site operator, a horticulturist, a property developer, and more. And, of course, also a game developer!

Do you have a question you’d like to ask Tom? Send it in through the form below, and we’ll try to include it in our upcoming Q&A!


The level editor.

Say, do you like Bloxorz? I sure do—it’s one of my favorite games! So imagine my delight when I discovered that a fan of the game—who goes by the handle Jz Pan—created an extension of it where you can make your own levels. Awesome, right? It’s called Turning Square, and you can download it¬†here.

(You’ll need to uncompress the file after downloading, then open TurningSquare.exe. This is a little more involved than what’s usual here on Math Munch, but I promise it’s worth it!¬†Also,¬†Turning Square has only been developed for PC. Sorry, Mac fans.)

The level!

The level I made!

But wait, there’s more! Turning Square also introduces new elements to Bloxorz, like slippery ice and pyramids you can trip over. It has a random level generator that can challenge you with different levels of difficulty. Finally, Turning Square includes a level solver—it can determine whether a level that you create is possible or not and how many steps it takes to complete.

Jz Pan is from China and is now a graduate student at the Chinese Academy of Sciences, majoring in mathematics and studying number theory. Jz Pan made Turning Square in high school, back in 2008.

Jz Pan has agreed to answer some of your questions! Use the form below to send us some.

If you make a level in Turning Square that you really like, email us the .box file and we can share it with everyone through our new Readers’ Gallery! Here is my level from above, if you want to try it out.

Jz Pan has also worked on an even more ambitious extension of Bloxorz called Turning Polyhedron. The goal is the same, but like the game Dublox, the shape that you maneuver around is different. Turning Polyhderon features several different shapes. Check out this video of it being played with a u-polyhedron!

And if you think that’s wild, check out this video with multiple moving blocks!

Last up this week, have you ever heard that it’s impossible to fold a piece of paper in half more than eight times? Or maybe it’s seven…? Either way, it’s a “fact” that seems to be common knowledge, and it sure seems like it’s true when you try to fold up a standard sheet of paper—or even a jumbo sheet of paper. The stack sure gets thick quickly!

Britney Gallivan and her 11th fold.

Britney and her 11th fold.

Well, here’s a great story about a teenager who decided to debunk this “fact” with the help of some math and some VERY big rolls of toilet paper. Her name is Britney Gallivan. Back in 2001, when she was a junior in high school, Britney figured out a formula for how much paper she’d need in order to fold it in half twelve times. Then she got that amount of paper and actually did it!

Due to her work, Britney has a citation in¬†MathWorld’s article on folding¬†and even her own Wikipedia article. After high school, Britney went on to UC Berkeley where she majored in¬†Environmental Science.¬†I’m trying to get in touch with Britney for an interview—if you have a question for her, hold onto it, and I’ll keep you posted!

EDIT: I got in touch with Britney, and she’s going to do an interview!

A diagram that illustrates how Britney derived her equation.

A diagram that illustrates how Britney derived her equation.

The best place to read more about Britney’s story in this article at pomonahistorical.org—the historical website of Britney’s hometown. Britney’s story shows that even when everyone else says that something’s impossible, that doesn’t mean you can’t be the one to do it. Awesome.

I hope you enjoy trying some Numenko puzzles, tinkering with Turning Square, and reading about Britney’s toilet paper adventure.

Bon appetit!

PS Want to see a video of some toilet-paper folding? Check out the very first “family math” video by Mike Lawler and his kids.

Reflection Sheet – Numenko, Turning Square, and Toilet Paper

God’s Number, Chocolate, and Devil’s Number

Welcome to this week’s Math Munch! This week, I’m sharing with you some math things that make me go, “What?!” Maybe you’ll find them surprising, too.

The first time I heard about this I didn’t believe it. If you’ve never heard it, you probably won’t believe it either.

Ever tried to solve one of these? I’ve only solved a Rubik’s cube once or twice, always with lots of help – but every time I’ve worked on one, it’s taken FOREVER to make any progress. Lots of time, lots of moves…. There are¬†43,252,003,274,489,856,000¬†(yes, that’s 43 quintillion)¬†different configurations of a Rubik’s cube, so solving a cube from any one of these states must take a ridiculous number of moves. Right?

Nope. In 2010, some mathematicians and computer scientists proved that every single Rubik’s cube – no matter how it’s mixed up – can be solved in at most 20 moves. Because only an all-knowing being could figure out how to solve any Rubik’s cube in 20 moves or less, the mathematicians called this number God’s Number.

Once you get over the disbelief that any of the 43 quintillion cube configurations can be solved in less than 20 moves, you may start to wonder how someone proved that. Maybe the mathematicians found a really clever way that didn’t involve solving every cube?

Not really – they just used a REALLY POWERFUL computer. Check out this great video from Numberphile about God’s number to learn more:

Screen Shot 2013-10-02 at 2.48.01 PM

Here’s a chart that shows how many Rubik’s cube configurations need different numbers of moves to solve. I think it’s surprising that so few required all 20 moves. Even though every cube can be solved in 20 or less moves, this is very hard to do. I think it’s interesting how in the video, one of the people interviewed points out that solving a cube in very few moves is probably much more impressive than solving a cube in very little time. Just think – it takes so much thought to figure out how to solve a Rubik’s cube at all. If you also tried to solve it efficiently… that would really be a puzzle.

Next, check out this cool video. Its appealing title is, “How to create chocolate out of nothing.”

This type of puzzle, where area seems to magically appear or disappear when it shouldn’t, is called a geometric vanish. We’ve been talking about these a lot at school, and one of the things we’re wondering is whether you can do what the guy in the video did again, to make a second magical square of chocolate. What do you think?

infinityJHFinally, I’ve always found infinity baffling. It’s so hard to think about. Here’s a particularly baffling question: which is bigger, infinity or infinity plus one? Is there something bigger than infinity?

I found this great story that helps me think about different sizes of infinity. It’s based on similar story by mathematician¬†Raymond Smullyan. In the story, you are trapped by the devil until you guess the devil’s number. The story tells you how to guarantee that you’ll guess the devil’s number depending on what sets of numbers the devil chooses from.

Surprisingly, you’ll be able to guess the devil’s number even if he picks from a set of numbers with an infinite number of numbers in it! You’ll guess his number if he picked from the counting numbers larger than zero, positive or negative counting numbers, or all fractions and counting numbers. You’d think that there would be too many fractions for you to guess the devil’s number if he included those in his set. There are infinitely many counting numbers – but aren’t there even more fractions? The story tells you about a great way to organize your guessing that works even with fractions. (And shows that the set of numbers with fractions AND counting numbers is the same size as the set of numbers with just counting numbers… Whoa.)

Is there something mathematical that makes¬†you¬†go, “What?!” How about, “HUH?!” If so, send us an email or leave us a note in the comments. We’d love to hear about it!

Bon appetit!

Prime Gaps, Mad Maths, and Castles

Welcome to this week’s Math Munch!

It has been a thrilling last month in the world of mathematics. Several new proofs about number patterns have been announced. Just to get a flavor for what it’s all about, here are some examples.

I can make 15 by adding together three prime numbers: 3+5+7. I can do this with 49, too: 7+11+31. Can all odd numbers be written as three prime numbers added together? The Weak Goldbach Conjecture says that they can, as long as they’re bigger than five. (video)

11 and 13 are primes that are only two apart. So are 107 and 109. Can we find infinitely many such prime pairs? That’s called the Twin Prime Conjecture. And if we can’t, are there infinitely many prime pairs that are at most, say, 100 apart? (video, with a song!)

Harald Helfgott

Harald Helfgott

Yitang "Tom" Zhang

Yitang “Tom” Zhang

People have been wondering about these questions for hundreds of years. Last month,¬†Harald Helfgott¬†showed that the Weak Goldbach Conjecture is true! And¬†Yitang ‚ÄúTom‚ÄĚ Zhang showed that there¬†are infinitely many prime pairs that are at most 70,000,000 apart!¬†You can find lots of details about these discoveries and links to even more in¬†this roundup¬†by Evelyn Lamb.

What’s been particularly fabulous about Tom’s result about gaps between primes is that other mathematicians have started to work together to make it even better. Tom originally showed that there are an infinite number of prime pairs that are at most 70,000,000 apart. Not nearly as cute as being just two apart—but as has been remarked, 70,000,000 is a lot closer to two than it is to infinity! That gap of 70,000,000 has slowly been getting smaller as mathematicians have made improvements to Tom’s argument. You can see the results of their efforts on the polymath project. As of this writing, they’ve got the gap size narrowed down to 12,006—you can track the decreasing values down the page in the H column. So there are infinitely many pairs of primes that are at most 12,006 apart! What amazing progress!

Two names that you’ll see in the list of contributors¬†to the effort are Andrew Sutherland and Scott Morrison. Andrew is a computational number theorist at MIT and Scott has done research in knot theory and is at¬†the Australian National University. They’ve improved arguments and sharpened figures to lower the prime gap value H. They’ve contributed by doing things like¬†using a¬†hybrid Schinzel/greedy (or “greedy-greedy”) sieve. Well, I know what a¬†sieve¬†is and what a greedy algorithm is, but believe me, this is very complicated stuff that’s way over my head. Even so, I love getting to watch the way that these mathematicians bounce ideas off each other, like on this thread.

Andrew Sutherland

Andrew Sutherland

Click through to see Andrew next to an amazing Zome creation!

Andrew. Click this!

Scott Morrison

Scott Morrison

Andrew and Scott have agreed to answer some of your questions about their involvement in this research about prime gaps and their lives as mathematicians. I know I have some questions I’m curious about! You can submit your questions in the form below:

I can think of only two times in my life where I was so captivated by mathematics in the making as I am by this prime gaps adventure. Andrew Wiles’s proof of Fermat’s Last Theorem was on the fringe of my awareness when it came out in 1993—its twentieth anniversary of his proof¬†just happened, in fact. The result still felt very new and exciting when I read Fermat’s Enigma a couple of years later. Grigori Perelman’s proof of the Poincare Conjecture¬†made headlines just after I moved to New York City seven years ago. I still remember reading a big article about it in the New York Times, complete with a picture of a rabbit with a grid on it.

This work on prime gaps is even more exciting to me than those, I think. Maybe it’s partly because I have more mathematical experience now, but I think it’s mostly because lots of people are helping the story to unfold and we can watch it happen!

fig110u2bNext up, I ran across a great site the other week when I was researching the idea of a “cut and slide” process. The site is called Mad Maths and the page I landed on was all about beautiful dissections of simple shapes, like circles and squares. I’ve picked out one that I find especially charming to feature here, but you might enjoy seeing them all. The site also contains all kinds of neat puzzles and problems to try out. I’m always a fan of¬†congruent pieces problems, and these paper-folding puzzles are really tricky and original. (Or maybe, origaminal!) You’ll might especially like them if you liked Folds.

Christian's applet displaying the original four-room castle.

Christian’s applet displaying the original four-room castle.

Finally, we previously posted about Matt Parker’s great video problem about a princess hiding in a castle. Well, Christian Perfect of The Aperiodical¬†has created an applet that will allow you to explore this problem—plus, it’ll let you build and try out other castles for the princess to hide in. Super cool! Will I ever be able to find the princess in this crazy star castle I designed?!

Crazy star castle!

My crazy star castle!

And as summer gets into full swing, the other kind of castle that’s on my mind is the sandcastle. Take a peek at these photos of geometric sandcastles by Calvin Seibert. What shapes can you find? Maybe Calvin’s creations will inspire your next beach creation!

Bon appetit!

167739151_ec142bbfe8 3342635687_f847918e0e 5945114420_c950231830

Folds, GIMPS, and More Billiards

Welcome to this week’s Math Munch!

First up, we’ve often featured mathematical constructions made of origami. (Here are some of those posts.) Origami has a careful and peaceful feel to it—a far cry from, say, the quick reflexes often associated with video games. I mean, can you imagine an origami video game?


One of Fold’s many origami puzzles.

Well, guess what—you don’t have to, because Folds is just that! Folds is the creation of Bryce Summer, a 21-year-old game designer from California. It’s so cool. The goal of each level of its levels is simple: to take a square piece of paper and fold it into a given shape. The catch is that you’re only allowed a limited number of folds, so you have to be creative and plan ahead so that there aren’t any loose ends sticking out. As I’ve noted before, my favorite games often require a combo of visual intuition and careful thinking, and Folds certainly fits the bill.¬†Give it a go!

Once you’re hooked, you can find out more about Bryce and how he came to make Folds in¬†this awesome Q&A. Thanks so much, Bryce!

gimpsNext up, did you know that a new largest prime number was discovered less than a month ago? It’s very large—over 17 million digits long! (How many pages would that take to print or write out?) That makes it way larger than the previous record holder, which was “only” about 13 million digits long. Here is an article published on the GIMPS website about the new prime number and about the GIMPS project in general.

What’s GIMPS you ask? GIMPS—the Great Internet Mersenne Primes Search—is an example of what’s called “distributed computing”. Testing whether a number is prime is a simple task that any computer can do, but to check many or large numbers can take a lot of computing time. Even a supercomputer would be overwhelmed by the task all on its own, and that’s if you could even get dedicated time on it. Distributed computing is the idea that a lot of processing can be accomplished by having a lot of computers each do a small amount of work. You can even sign up to help with the project on your own computer. What other tasks might distributed computing be useful for? Searching for aliens, perhaps?

GIMPS searches only for a special kind of prime called Mersenne primes. These primes are one less than a power of two. For instance, 7 is a Mersenne prime, because it’s one less that 8, which is the third power of 2. For more on Mersenne primes, check out¬†this video¬†by Numberphile.

Finally, we’ve previously shared some resources about the math of billiards on Math Munch. Below you’ll find another take on bouncing paths as¬†Michael Moschen combines the math of billiards with the art of juggling.

So lovely. For more on this theme, here’s a second video to check out.

Bon appetit!