Tag Archives: infinity

Talk Like a Computer, Infinite Hotel, and Video Contest

01010111 01100101 01101100 01100011 01101111 01101101 01100101 00100000 01110100 01101111 00100000 01110100 01101000 01101001 01110011 00100000 01110111 01100101 01100101 01101011 00100111 01110011 00100000 01001101 01100001 01110100 01101000 00100000 01001101 01110101 01101110 01100011 01101000 00100001

Or, if you don’t speak binary, welcome to this week’s Math Munch!

Looking at that really, really long string of 0s and 1s, you might think that binary is a really inefficient way to encode letters, numbers, and symbols. I mean, the single line of text, “Welcome to this week’s Math Munch!” turns into six lines of digits that make you dizzy to look at. But, suppose you were a computer. You wouldn’t be able to talk, listen, or write. But you would be made up of lots of little electric signals that can be either on or off. To communicate, you’d want to use the power of being able to turn signals on and off. So, the best way to communicate would be to use a code that associated patterns of on and off signals with important pieces of information– like letters, numbers, and other symbols.

That’s how binary works to encode information. Computer scientists have developed a code called ASCII, which stands for American Standard Code for Information Interchange, that matches important symbols and typing communication commands (like tab and backspace) with numbers.

To use in computing, those numbers are converted into binary. How do you do that? Well, as you probably already know, the numbers we regularly use are written using place-value in base 10. That means that each digit in a number has a different value based on its spot in the number, and the places get 10 times larger as you move to the left in the number. In binary, however, the places have different values. Instead of growing 10 times larger, each place in a binary number is twice as large as the one to its right. The only digits you can use in binary are 0 and 1– which correspond to turning a signal on or leaving it off.

But if you want to write in binary, you don’t have to do all the conversions yourself. Just use this handy translator, and you’ll be writing in binary 01101001 01101110 00100000 01101110 01101111 00100000 01110100 01101001 01101101 01100101 00101110

Next up, check out this video about a classic number problem: the Infinite Hotel Paradox. If you find infinity baffling, as many mathematicians do, this video may help you understand it a little better. (Or add to the bafflingness– which is just how infinity works, I guess.)

I especially like how despite how many more people get rooms at the hotel (so long as the number of people is countable!), the hotel manager doesn’t make more money…

Speaking of videos, how about a math video contest? MATHCOUNTS is hosting a video contest for 6th-8th grade students. To participate, teams of four students and their teacher coach choose a problem from the MATHCOUNTS School Handbook and write a screenplay based on that problem. Then, make a video and post it to the contest website. The winning video is selected by a combination of students and adult judges– and each member of the winning team receives a college scholarship!

Here’s last year’s first place video.

01000010 01101111 01101110 00100000 01100001 01110000 01110000 01100101 01110100 01101001 01110100 00100001  (That means, Bon appetit!)

Light Bulbs, Lanterns, and Lights Out

Welcome to this week’s Math Munch!


Edison with his light bulb.

On this day in 1880, Thomas Edison was given a patent for his most famous bright idea—the light bulb.

Edison once said, “Genius is one per cent inspiration, ninety-nine per cent perspiration”—a good reminder that putting in some work is important both in math and in life. He also said, “We don’t know a millionth of one percent about anything.” A humbling thought. Also, based on that quote, it sounds like Edison might have had a use for permilles or even permyraids in addition to percents!

Mike's octahedron.

Mike’s octahedron-in-a-light-buld.

In celebration of this illustrious anniversary, I’d like to share some light mathematical fare relating to, well, light bulbs. For starters, J. Mike Rollins of North Carolina has created each of the Platonic solids inside of light bulbs, ship-in-a-bottle style. Getting just the cube to work took him the better part of twelve hours! Talk about perspiration. Mike has also made a number of lovely Escher-inspired woodcuts. Check ’em out!

Evelyn's Schwartz lantern.

Evelyn’s Schwartz lantern.

Next up is a far-out example from calculus that’s also a good idea for an art project. It’s called the Schwartz lantern. I found out about this amazing object last fall when Evelyn Lamb tweeted and blogged about it.

The big idea of calculus is that we can find exact answers to tough problems by setting up a pattern of approximations that get better and better and then—zoop! take the process to its logical conclusion at infinity. But there’s a catch: you have to be careful about how you set up your pattern!

A "nicely" triangulated cylinder.

A “nicely” triangulated cylinder.

For example, if you take a cylinder and approximate its surface with a bunch of triangles carefully, you’ll end up with a surface that matches the cylinder in shape and size. But if you go about the process in a different way, you can end up with a surface that stays right near the cylinder but that has infinite area. That’s the Schwartz lantern, first proposed by Karl Hermann Amandus Schwarz of Cauchy-Schwartz fame. The infinite area happens because of all the crinkles that this devilish pattern creates. For some delightful technical details about the lantern’s construction, check out Evelyn’s post and this article by Conan Wu.

Maybe you’ll try folding a Schwartz lantern of your own. There’s a template and instructions on Conan’s blog to get you started. You’ll be glowing when you finish it up—especially if you submit a photo of it to our Readers’ Gallery. Even better, how about a video? You could make the internet’s first Schwartz lantern short film!

Robert Torrence and his Lights Out puzzle.

Robert and his Lights Out puzzle.

At the MOVES Conference last fall, Bruce Torrence of Randolf-Macon College gave a talk about the math of Lights Out. Lights Out is a puzzle—a close relative of Ray Ray—that’s played on a square grid. When you push one of the buttons in the grid it switches on or off, and its neighbors do, too. Bruce and his son Robert created an extension of this puzzle to some non-grid graphs. Here’s an article about their work and here’s an applet on the New York Times website where you can play Lights Out on the Peterson graph, among others. You can even create a Lights Out puzzle of your own! If it’s more your style, you can try a version of the original game called All Out on Miniclip.

The original Lights Out handheld game from 1995.

The original Lights Out handheld game from 1995.

There’s a huge collection of Lights Out resources on Jaap’s Puzzle Page (previously), including solution strategies, variations, and some great counting problems. Lights Out and Ray Ray are both examples of what’s called a “sigma-plus game” in the mathematical literature. Just as a bonus, there’s this totally other game called Light Up. I haven’t solved a single puzzle yet, but my limitations shouldn’t stop you from trying. Perspiration!

All this great math work might make you hungry, so…bon appetit!

God’s Number, Chocolate, and Devil’s Number

Welcome to this week’s Math Munch! This week, I’m sharing with you some math things that make me go, “What?!” Maybe you’ll find them surprising, too.

The first time I heard about this I didn’t believe it. If you’ve never heard it, you probably won’t believe it either.

Ever tried to solve one of these? I’ve only solved a Rubik’s cube once or twice, always with lots of help – but every time I’ve worked on one, it’s taken FOREVER to make any progress. Lots of time, lots of moves…. There are 43,252,003,274,489,856,000 (yes, that’s 43 quintillion) different configurations of a Rubik’s cube, so solving a cube from any one of these states must take a ridiculous number of moves. Right?

Nope. In 2010, some mathematicians and computer scientists proved that every single Rubik’s cube – no matter how it’s mixed up – can be solved in at most 20 moves. Because only an all-knowing being could figure out how to solve any Rubik’s cube in 20 moves or less, the mathematicians called this number God’s Number.

Once you get over the disbelief that any of the 43 quintillion cube configurations can be solved in less than 20 moves, you may start to wonder how someone proved that. Maybe the mathematicians found a really clever way that didn’t involve solving every cube?

Not really – they just used a REALLY POWERFUL computer. Check out this great video from Numberphile about God’s number to learn more:

Screen Shot 2013-10-02 at 2.48.01 PM

Here’s a chart that shows how many Rubik’s cube configurations need different numbers of moves to solve. I think it’s surprising that so few required all 20 moves. Even though every cube can be solved in 20 or less moves, this is very hard to do. I think it’s interesting how in the video, one of the people interviewed points out that solving a cube in very few moves is probably much more impressive than solving a cube in very little time. Just think – it takes so much thought to figure out how to solve a Rubik’s cube at all. If you also tried to solve it efficiently… that would really be a puzzle.

Next, check out this cool video. Its appealing title is, “How to create chocolate out of nothing.”

This type of puzzle, where area seems to magically appear or disappear when it shouldn’t, is called a geometric vanish. We’ve been talking about these a lot at school, and one of the things we’re wondering is whether you can do what the guy in the video did again, to make a second magical square of chocolate. What do you think?

infinityJHFinally, I’ve always found infinity baffling. It’s so hard to think about. Here’s a particularly baffling question: which is bigger, infinity or infinity plus one? Is there something bigger than infinity?

I found this great story that helps me think about different sizes of infinity. It’s based on similar story by mathematician Raymond Smullyan. In the story, you are trapped by the devil until you guess the devil’s number. The story tells you how to guarantee that you’ll guess the devil’s number depending on what sets of numbers the devil chooses from.

Surprisingly, you’ll be able to guess the devil’s number even if he picks from a set of numbers with an infinite number of numbers in it! You’ll guess his number if he picked from the counting numbers larger than zero, positive or negative counting numbers, or all fractions and counting numbers. You’d think that there would be too many fractions for you to guess the devil’s number if he included those in his set. There are infinitely many counting numbers – but aren’t there even more fractions? The story tells you about a great way to organize your guessing that works even with fractions. (And shows that the set of numbers with fractions AND counting numbers is the same size as the set of numbers with just counting numbers… Whoa.)

Is there something mathematical that makes you go, “What?!” How about, “HUH?!” If so, send us an email or leave us a note in the comments. We’d love to hear about it!

Bon appetit!

TesselManiac, Zeno’s Paradox, and Platonic Realms

Welcome to this week’s Math Munch!

Before we begin, we’d like to thank all of you who have checked out the site in the past week. Since we’ve kicked off our share campaign, we’ve had so many new visitors and heard from many of them, too! Reading your feedback – whether a recommendation, some praise, a question, or just a brief, “Hello!” – brings us great joy and helps us to know that you all are out there.

Whether you’re a regular reader or visiting the site for the first time, we’d like to ask you for a little favor. If you see some math you like, share it with someone who you think would like it, too! Do you love the burst of excitement that you get from reading about a new mathematical idea, seeing an original piece of math artwork, or trying out a new game? Do you know someone who would love that, too? Then tell them about Math Munch – we’d love to spread the joy.

If you enjoy Math Munch, join in our “share campaign” this week.

You can read more about the share campaign here. There are lots of ways to participate, and you can let us know about your sharing through this form. We’d love to see the share total rise up to 1000 over the course of the next week.

Now for the post!


Lee boxThis beautiful tessellated wooden box was made by computer scientist and mathematical artist Kevin Lee. I met Kevin two weeks ago at the MOVES conference (which Justin and Paul have both written about already). Kevin teaches computer science at Normandale Community College in Minnesota. He makes woodcut tessellations (which won an award for the “Best Textile, Sculpture, or Other Medium” at the Joint Mathematics Meetings art exhibition this year!). He’s also used a combination of his knowledge of computer science and his love of Escher-type tessellations to make software that helps you create tessellations. His new software, TesselManiac!, is due out soon (watch this short movie Kevin made about it for the Bridges conference), but you can download an older version of the software here and play a preview version of The Flipping Tile Game.

tesselmaniac pictures

To play this game, you must fill in an outline of a tessellation with the piece given. You can use any of four symmetry motions – translation (or shift), rotation, reflection, or glide reflection (which reflects the tile and then translates it along a line parallel to the line of reflection). You get points for each correct tile placed (and lose points if you have to delete). Translations are the simplest, and only give you 5 points each. Reflections are the most difficult – you get 20 points for each one used!

dot to dotWhile you’re downloading The Flipping Tile Game, try one of Kevin’s Dot-to-Dot puzzles. These are definitely not your typical dot-to-dot. Only the portion of the image corresponding to one tile in the tessellation is numbered. Once you figure out the shape of that single tile, you have to figure out how to number the rest of the puzzle!

Lucky for us, Kevin has agreed to answer some questions about his life and work as a math artist and computer scientist. Leave a question for Kevin here. (We’ll take questions for the next two weeks.)

tortoiseI’ve recently been thinking about a paradox that has puzzled mathematicians for centuries. Maybe you’ve heard of it. It’s one of the ancient Greek philosopher Zeno‘s paradoxes of motion, and it goes like this: Achilles (a really fast Greek hero) and a tortoise are going to run a race. Achilles agrees to give the tortoise a head-start, because the tortoise is so slow. Achilles then starts to run. But as Achilles catches up with the tortoise, the tortoise moves a little further. So the tortoise is still ahead. And as Achilles moves to catch up again, the tortoise moves even further! Sounds like Achilles will never catch up to the tortoise, let alone pass him… But that doesn’t make sense…

Will Achilles lose the race??? Check out this great video from Numberphile that explains both the paradox and the solution.

logo_PR_225_160While I was looking for information about this paradox, I stumbled across a great math resource site called Platonic Realms. The homepage of this site has a daily historical fact, mathematical quote, and puzzle.

The site hosts a math encyclopedia with explanations of all kinds of math terms and little biographies of famous mathematicians. You can also read “mini-texts” about different mathematical topics, such as this one about M. C. Escher (the inspiration behind the art at the beginning of this post!) or this one about coping with math anxiety.

I hope we here at Math Munch have given you something to tantalize your mathematical taste buds this week! If so, we’d love it if you would pass it along.

Thank you for reading, and bon appetit!

Rush hourP.S. – We’ve posted a new game, suggested to us by one of our readers! It’s an online version of Rush Hour. Check it out!

Coasts, Clueless Puzzles, and Beach Math Art

summerAh, summertime. If it’s as hot where you are as it is here in New York, I bet this beach looks great to you, too. A huge expanse of beach all to myself sounds wonderful… And that makes me wonder – how much coastline is there in the whole world?

Interestingly, the length of the world’s coastline is very much up for debate. Just check out this Wikipedia page on coastlines, and you’ll notice that while the CIA calculates the total coastline of the world to be 356,000 kilometers, the World Resources Institute measures it to be 1,634,701! What???

Measuring the length of a coastline isn’t as simple as it might seem, because of something called the Coastline Paradox. This paradox states that as the ruler you use to measure a coastline gets shorter, the length of the coastline gets longer – so that if you used very, very tiny ruler, a coastline could be infinitely long! This excellent video by Veritasium explains the problem very well:

2000px-KochFlakeAs Vertitasium says, many coastlines are fractals, like the Koch snowflake shown at left – never-ending, infinitely complex patterns that are created by repeating a simple process over and over again. In this case, that simple process is the waves crashing against the shore and wearing away the sand and rock. If coastlines can be infinitely long when you measure them with the tiniest of rulers, how to geographers measure coastline? By choosing a unit of measurement, making some approximations, and deciding what is worth ignoring! And, sometimes, agreeing to disagree.

Need something to read at the beach, and maybe something puzzle-y to ponder? Check out this interesting article by four mathematicians and computer scientists, including James Henle, a professor in Massachusetts. They’ve invented a Sudoku-like puzzle they call a “Clueless Puzzle,” because, unlike Sudoku, their puzzle never gives any number clues.

Clueless puzzleHow does this work? These puzzles use shapes instead of numbers to provide clues. Here’s an example from the paper: Place the numbers 1 through 6 in the cells of the figure at right so that no digit appears more than once in a row or column AND so that the numbers in each region add to the same sum. The paper not only walks you through the solution to this problem, but also talks about how the mathematicians came up with the idea for the puzzles and studied them mathematically. It’s very interesting – I recommend you read it!

Finally, if you’re not much of a beach reader, maybe you’d like to make some geometrically-inspired beach art! Check out this land art by artist Andy Goldsworthy:

Andy Goldsworthy 1
Andy Goldsworthy 2

Or make one of these!

Happy summer, and bon appetit!

Maths Ninja, Folding Fractals, and Pi Fun

Welcome to this week’s Math Munch!

ninjaFirst up, have you ever been stuck on a gnarly math problem and wished that a math ninja would swoop in and solve the problem before it knew what hit it?  Have you ever wished that you had a math dojo who would impart wisdom to you in cryptic but, ultimately, extremely timely and useful ways?  Well, meet Colin Beverige, a math (or, as he would say, maths) tutor from England who writes a fun blog called Flying Colours Maths.  On his blog, he publishes a weekly series called, “Secrets of the Mathematical Ninja,” in which the mathematical ninja (maybe Colin himself?  He’s too stealthy to tell)  imparts nuggets of sneaky wisdom to help you take down your staunchest math opponent.

colin_bridgeFor example, you probably know the trick for multiplying by 9 using your fingers – but did you know that there’s a simple trick for dividing by 9, too?  Ever wondered how to express thirteenths as decimals, in your head?  (Probably not, but maybe you’re wondering now!)  Want to know how to simplify fractions like a ninja?  Well, the mathematical ninja has the answers – and some cute stories, too.  Check it out!

A picture of the Julia set.

A picture of a Julia set.

Next, I find fractals fascinating, but – I’ll admit it – I don’t know much about them.  I do know a little about the number line and graphing, though.  And that was enough to learn a lot more about fractals from this excellent post on the blog Hackery, Math, and Design by Steven Wittens.  In the post How to Fold a Julia Fractal, Steven describes how the key to understanding fractals is understanding complex numbers, which are the numbers we get when we combine our normal numbers with imaginary numbers.

complex multiplicationNow, I think imaginary numbers are some of the most interesting numbers in mathematics – not only because they have the enticing name “imaginary,” but because they do really cool things and have some fascinating history behind them.  Steven does a really great job of telling their history and showing the cool things they do in this post.  One of the awesome things that imaginary numbers do is rotate.  Normal numbers can be drawn on a line – and multiplying by a negative number can be thought of as changing directions along the number line.  Steven uses pictures and videos to show how multiplying by an imaginary number can be thought of as rotating around a point on a plane.

here comes the julia set

A Julia set in the making.

The Julia set fractal is generated by taking complex number points and applying a function to them that squares each point and adds some number to it.  The fractal is the set of points that don’t get infinitely larger and larger as the function is applied again and again.  Steven shows how this works in a series of images.  You can watch the complex plane twist around on itself to make the cool curves and figures of the Julia set fractal.

Steven’s blog has many more interesting posts.  Check out another of my favorites, To Infinity… and Beyond! for an exploration of another fascinating, but confusing, topic – infinity.

Finally, a Pi Day doesn’t go by without the mathematicians and mathematical artists of the world putting out some new Pi Day videos!  Pi Day was last Thursday (3/14, of course).  Here’s a video from Numberphile in which Matt Parker calculates pi using pies!

In this video, also from Numberphile, shows how you only need 39 digits of pi to make really, really accurate measurements for the circumference of the observable universe:

Finally, it wouldn’t be Pi Day without a pi video from Vi Hart.  Here’s her contribution for this year:

Bon appetit!

The Museum of Math, Shapes That Roll, and Mime-matics

Welcome to this week’s Math Munch!  We have so many exciting things to share with you this week – so let’s get started!

Something very exciting to math lovers all over the world happened on Saturday.  The Museum of Mathematics opened its doors to the public!

MoMath entranceThe Museum of Mathematics (affectionately called MoMath – and that’s certainly what you’ll get if you go there) is in the Math Munch team’s hometown, New York City.

human treeThere are so many awesome exhibits that I hardly know where to start.  But if you go, be sure to check out one of my favorite exhibits, Twist ‘n Roll.  In this exhibit, you roll some very interestingly shaped objects along a slanted table – and investigate the twisty paths that they take.  And you can’t leave without seeing the Human Tree, where you turn yourself into a fractal tree.

coaster rollersOr going for a ride on Coaster Rollers, one of the most surprising exhibits of all.  In this exhibit, you ride in a cart over a track covered with shapes that MoMath calls “acorns.”  The “acorns” aren’t spheres – and yet your ride over them is completely smooth!  That’s because these acorns, like spheres, are surfaces of constant width.  That means that if you pick two points on opposite ends of the acorn – with “opposite” meaning points that you could hold between your hands while your hands are parallel to each other – the distance between those points is the same regardless of the points you choose.  See some surfaces of constant width in action in this video:

Rouleaux_triangle_AnimationOne such surface of constant width is the shape swept out by rotating a shape called a Reuleaux triangle about one of its axes of symmetry.  Much as an acorn is similar to a sphere, a Reuleaux triangle is similar to a circle.  It has constant diameter, and therefore rolls nicely inside of a square.  The cart that you ride in on Coaster Rollers has the shape of a Reuleaux triangle – so you can spin around as you coast over the rollers!

Maybe you don’t live in New York, so you won’t be able to visit the museum anytime soon.  Or maybe you want a little sneak-peek of what you’ll see when you get there.  In any case, watch this video made by mathematician, artist, and video-maker George Hart on his first visit to the museum.  George also worked on planning and designing the exhibits in the museum.

We got the chance to interview Emily Vanderpol, the Outreach Exhibits coordinator for MoMath, and Melissa Budinic, the Assistant Exhibit Designer for MoMath.  As Cindy Lawrence, the Associate Director for MoMath says, “MoMath would not be open today if it were not for the efforts” of Emily and Melissa.  Check out Melissa and Emily‘s interviews to read about their favorite exhibits, how they use math in their jobs for MoMath, and what they’re most excited about now that the museum is open!

mimematicsLogo (1)Finally, meet Tim and Tanya Chartier.  Tim is a math professor at Davidson College in North Carolina, and Tanya is a language and literacy educator.  Even better, Tim and Tanya have combined their passion for math and teaching with their love of mime to create the art of Mime-matics!  Tim and Tanya have developed a mime show in which they mime about some important concepts in mathematics.  Tim says about their mime-matics, “Mime and math are a natural combination.  Many mathematical ideas fold into the arts like shape and space.  Further, other ideas in math are abstract themselves.  Mime visualizes the invisible world of math which is why I think math professor can sit next to a child and both get excited!”

One of my favorite skits, in which the mime really does help you to visualize the invisible world of math, is the Infinite Rope.  Check it out:

slinkyIn another of my favorite skits, Tanya interacts with a giant tube that twists itself in interesting topological ways.  Watch these videos and maybe you’ll see, as Tanya says, how a short time “of positive experiences with math, playing with abstract concepts, or seeing real live application of math in our world (like Google, soccer, music, NASCAR, or the movies)  can change the attitude of an audience member who previously identified him/herself as a “math-hater.””  You can also check out Tim’s blog, Math Movement.

Tim and Tanya kindly answered some questions we asked them about their mime-matics.  Check out their interview by following this link, or visit the Q&A page.

Bon appetit!