Tag Archives: poetry

Bridges, Meander Patterns, and Water Sports

This past week the Math Munch team got to attend the Bridges 2012. Bridges is a mathematical art conference, the largest one in the world. This year it was held at Towson University outside of Baltimore, Maryland. The idea of the conference is to build bridges between math and the arts.

Participants gave lectures about their artwork and the math that inspired or informed it. There were workshop sessions about mathematical poetry and chances to make baskets and bead bracelets involving intricate patterns. There was even a dance workshop about imagining negative-dimensional space! There were also some performances, including two music nights (which included a piece that explored a Fibonacci-like sequence called Narayana’s Cows) and a short film festival (here are last year’s films). Vi Hart and George Hart talked about the videos they make and world-premiered some new ones. And at the center of it all was an art exhibition with pieces from around the world.

The Zen of the Z-Pentomino by Margaret Kepner

Does this piece by Bernhard Rietzl
remind you of a certain sweater?

5 Rhombic Screens by Alexandru Usineviciu

Pythagorean Proof by Donna Loraine

To see more, you should really just browse the Bridges online gallery.

A shot of the gallery exhibition

I know that Paul, Anna, and I will be sharing things with you that we picked up at Bridges for months to come. It was so much fun!

David Chappell

One person whose work and presentation I loved at Bridges is David Chappell. David is a professor of astronomy at the University of La Verne in California.

David shared some thinking and artwork that involve meander patterns. “Meander” means to wander around and is used to describe how rivers squiggle and flow across a landscape. David uses some simple and elegant math to create curve patterns.

Instead of saying where curves sit in the plane using x and y coordinates, David describes them using more natural coordinates, where the direction that the curve is headed in depends on how far along the curve you’ve gone. This relationship is encoded in what’s called a Whewell equation. For example, as you walk along a circle at a steady rate, the direction that you face changes at a contant rate, too. That means the Whewell equation of a circle might look like angle=distance. A smaller circle, where the turning happens faster, could be written down as angle=2(distance).

Look at how the Cauto River “meanders” across the Cuban landscape.

In his artwork, David explores curves whose equations are more complicated—ones that involve multiple sine functions. The interactions of the components of his equations allow for complex but rhythmic behavior. You can create meander patterns of your own by tinkering with an applet that David designed. You can find both the applet and more information about the math of meander patterns on David’s website.

David Chappell’s Meander #6
Make your own here!

When I asked David about how being a scientist affects his approach to making art, and vice versa, he said:

My research focuses on nonlinear dynamics and pattern formation in fluid systems. That is, I study the spatial patterns that arise when fluids are agitated (i.e. shaken or stirred). I think I was attracted to this area because of my interest in the visual arts. I’ve always been interested in patterns. The science allows me to study the underlying physical systems that generate the patterns, and the art allows me to think about how and why we respond to different patterns the way we do.  Is there a connection between how we respond to a visual image and the underlying “rules” that produced the image?  Why to some patterns look interesting, but others not so much?

For more of my Q&A with David, click here. In addition, David will be answering questions in the comments below, so ask away!

Since bridges and meandering rivers are both water-related, I thought I’d round out this post with a couple of interesting links about water sports and the Olympics. My springboard was a site called Maths and Sport: Countdown to the Games.

No wiggle rigs

Arrangements of rowers that are “wiggle-less”

Here’s an article that explores different arrangements of rowers in a boat, focusing on finding ones where the boat doesn’t “wiggle” as the rowers row. It’s called Rowing has its Moments.

Next, here’s an article about the swimming arena at the 2008 Beijing games, titled Swimming in Mathematics.


Paul used to be a competitive diver, and he says there’s an interesting code for the way dives are numbered.  For example, the “Forward 1 ½ Somersaults in Tuck Position” is dive number 103C.  How does that work?  You can read all about it here.  (Degree of difficulty is explained as well.)

Finally, enjoy these geometric patterns inspired by synchronized swimming!

Stay cool, and bon appetit!

Pi Digits, Pi-oetry, and Anti-Pi

This week’s Math Munch is brought to you by the number pi, because Wednesday (March 14th) is Pi Day!
 

Pi is an irrational number – meaning that it cannot be written as a ratio of integers.  Consequently, it’s decimal expansion goes on and on forever without any repeats.  But, that doesn’t mean people haven’t tried to list as many digits of pi as they can!  This site lists the first million digits of pi.  This site sings many of them – the tune is rather catchy.  And here you can search for strings of numbers in the decimal expansion for pi!  I searched for my birthday, 10/01/87 – it occurs 885,826 digits after the decimal point!

Remember the alphametics puzzle creator, Mike Keith?  Well, he writes poems and short stories in what he calls “Pilish,” in which the lengths of successive words represent successive digits of pi.  Here’s an explanation of the different forms of Pilish.  Mike holds the world record for the longest and second longest texts written in Pilish – they are his book, Not A Wake, and a short story, “Cadaeic Cadenza.”

Finally, as we celebrate pi on Wednesday, we should do so with some skepticism.  In the opinion of some mathematicians, pi is the wrong constant.  Inspired by this article by mathematician Bob Palais, some people have been speaking up in favor of the constant tau, which is double pi.  Here’s our favorite Vi Hart on the issue of pi:

You’ve heard what pi sounds like.  Want to know what tau sounds like?

Bon appetit!

Alphametics, Hyperbolic Crochet, and a Puzzle Contest

Welcome to the first Math Munch of December!

 

Did you know that SEND + MORE = MONEY?  Or that DOUBLE + DOUBLE + TOIL = TROUBLE?  It does if you replace the letters with the appropriate digits!  These very clever puzzles, where the digits in numbers of addition, subtraction, or multiplication problems are replaced by letters in words, are called alphametics (or sometimes cryptarithms).  Mathematician, software engineer, and writer Mike Keith calls them the “most elegant of puzzles” on his page devoted to some alphametics he’s found and created.  Check out the “doubly-true” alphametics – puzzles where the words are numbers – and Mike’s alphametic poetry.  In this poem, written in what Mike calls “Strict Alphametish,” the last word in each line is the sum of the previous words in that line!  Wow!

Next, take a look at these cool objects!

Purple hyperbolic plane

If you draw a line on a hyperbolic plane and a point not on that line, you can make an infinite number of lines parallel to the first line through the point.

These are models of hyperbolic planes crocheted by Cornell University mathematician and artist Daina Taimina.  A hyperbolic plane is a surface that is kind of like the opposite of a sphere: on a sphere, the surface always curves in towards itself, but on a hyperbolic plane, the surface always curves away from itself.

Before Daina figured out how to crochet a hyperbolic plane, mathematicians had no durable, easy-to-use models of this very important geometric object!  But now, anyone with a little crocheting skill (or a willingness to learn!) can make a hyperbolic plane!  Here are instructions on how to crochet your very own hyperbolic plane, and here’s a link to Daina’s blog.

By the way, our favorite mathematical doodler Vi Hart also makes models of hyperbolic planes out of balloons.

Finally, do you like to play with Rubik’s Cubes, stacking puzzles, or other physical math puzzles?  Think you could make one of your own?   These are some of the entries in the 2011 Nob Yoshigahara Puzzle Design Competition.  Here are the winners!  The designer of the first-place puzzle won this cool trophy!

Bon Appetit!