Monthly Archives: May 2012

Slides and Twists, Life in Life, and Star Art

Welcome to this week’s Math Munch!

I ran across the most wonderful compendium of slidey and twisty puzzles this past week when sharing the famous 15-puzzle with one of my classes.  It’s called Jaap’s Puzzle Page and it’s run by a software engineer from the Netherlands named Jaap Scherphuis. Jaap has been running his Puzzle Page since 1999.

Jaap Scherphuis
and some of his many puzzles

Jaap first encountered hands-on mathematical puzzles when he was given a Rubik’s Cube as a present when he was 8 or 9. He now owns over 700 different puzzles!

Jaap’s catalogue of slidey and twisty puzzles is immense and diverse. Each puzzle is accompanied by a picture, a description, a mathematical analysis, and–SPOILER ALERT–an algorithm that you can use to solve it!

On top of this, all of the puzzles in Jaap’s list with asterisks (*) next to them have playable Java applets on their pages–for instance, you can play Rotascope or Diamond 8-Ball. Something that’s especially neat about Jaap’s applets is that you can sometimes customize their size/difficulty. If you find the 15-puzzle daunting, you can start with the 8-puzzle or even the 3-puzzle instead. The applets also have a built in solver. I really enjoy watching the solver crank through solving a puzzle–it’s so relentless, and sometimes you can see patterns emerge.

Over ten solves, I found that the autosolve for the 15-puzzle averaged 7.1 seconds. How long do you think on average the 63-puzzle would take to solve?

You can read more about Jaap in this interview on or on his about page.


The 15-puzzle


Diamond 8-ball

Next, I recently read about an amazing feat: Brice Due created a copy of Conway’s Game of Life inside of a Game of Life! This video shows you what it’s all about. It starts zoomed in on some activity, following the rules of Life. The it zooms out to show that this activity conspires to make a large unit cell that is “turned on.” This large cell was dubbed a “OTCA metapixel” by its creator, where OTCA stands for Outer Totalistic Cellular Automata.

Finally, the video zooms out even more to show that this cell and others around it interact according to the rules of Life! The activity at the meta-level that is shown at the end exactly corresponds to the activity on the micro-level that we began with.  Check it out!

This metapixel idea has been around since 2006, but the video was created just recently by Philip Bradbury. It was made using Golly, a cellular automata explorer that is one of my favorite mathematical tools.

Last up, some star art! (STart? STARt? st-art?)  It turns out that the Math Munch team members all converged toward doing some StArT this semester as a part of our mathematical art (MArTH) seminar. Here is some of our work, for your viewing pleasure. Bon appetit!

by Anna Weltman

by Anna Weltman

Stars of the Mind’s Sky
by Paul Salomon

Star Ring 24
by Paul Salomon

300 Stars in Orbit
by Paul Salomon

by Justin Lanier

Line Fractals, Knitting, and 3-D Design

Welcome to this week’s Math Munch!

Take a look at this beautiful line drawing:

Jason Padgett

This is called, “Towards Pi 3.141552779 Hand-Drawn,” and it’s by mathematician and artist Jason Padgett.  Jason wasn’t always a mathematician or an artist.  In fact, it was only after a severe head injury that Jason suddenly found that he “saw” fractals and other geometric images in mathematical and scientific ideas.  Jason is interested in limits.  The picture above, for example, is Jason’s artistic interpretation of a limit that approaches pi.  If you draw a circle with radius 1 and make polygons inside of it using secants for their sides, the areas of the polygons get closer and closer to pi as the number of sides increases – but always stay less than pi.  If you take that same circle and make polygons around it using tangents for their sides, the areas of the polygons also get closer and closer to pi as the number of sides increases – but always stay larger than pi.  Jason tried to draw the way that those sequences “trap pi” in this picture.

I think it’s really amazing that Jason draws these by hand.  Here’s some more of Jason’s artwork, and a video of Jason drawing “Towards Pi 3.141552779 Hand-Drawn.”

Space Time Sine Cosine and Tangent Waves

The Power of Pi

Wave Particle Duality


Next, did you like Sondra Eklund’s sweater from last week?  Did it inspire you to do some mathematical knitting of your own?  If so, check out the website Woolly Thoughts.

Woolly Thoughts is run by “mathekniticians” Pat Ashforth and Steve Plummer who love to do, teach, and share math with others through their knitting.  They’ve designed many beautiful and mathematical afghan and pillow patterns, and some patterns for interesting math toys.  Here are some of my favorites:

The “Finite Field” afghan is a color-coded addition table using binary.

The “Fibo-Optic” afghan is made to look like a flying cube using side-lengths based on the Fibonacci sequence.

Finally, one of the programs featured in the new Math Art Tools link is TinkerCAD.  TinkerCAD is a program you can use to make 3D designs – just because, or to print out with a 3D printer!

TinkerCAD has three parts: Discover, Learn, and Design.  In the Discover section, you can browse things that other tinkerers have made and download them to print yourself.  There are some really cool things out there, like this Father’s Day mug made by Fabricatis and this sail boat made by Klyver Boys.

Next, in the Learn section, you can play different “quests” to hone your TinkerCAD skills.  Finally, in the Design section, you can make your own thing!  TinkerCAD is really intuitive to use.  The TinkerCAD tutorial video is really helpful if you want to learn how to use TinkerCAD – as are the quests.

Stay tuned for pictures of some TinkerCAD things made by friends of Math Munch!

Bon appetit!

A Sweater, Paper Projects, and Math Art Tools

Sondra Eklund and her Prime Factorization Sweater

Welcome to this week’s Math Munch!

Check out Sondra Eklund and her awesome prime factorization sweater! Sondra is a librarian and a writer who writes a blog where she reviews books. She also is a knitter and a lover of math!

Each number from two to one hundred is represented in order on the front of Sondra’s sweater. Each prime number is a square that’s a different color; each composite number has a rectangle for each of the primes in its prime factorization. This number of columns that the numbers are arranged into draws attention to different patterns of color. For instance, you can see a column that has a lot of yellow in it on the front of the sweater–these are all number that contain five as a factor.

You can read more about Sondra and her sweater on her blog. Also, here’s a response and variation to Sondra’s sweater by John Graham-Cumming.

Next up, do you like making origami and other constructions out of paper? Then you’ll love the site made by Laszlo Bardos called CutOutFoldUp.

Laszlo Bardos

A Rhombic Spirallohedron

A decagon slide-together

Laszlo is a high school math teacher and has enjoyed making mathematical models since he was a kid. On CutOutFoldUp you’ll find gobs of projects to try out, including printable templates. I’ve made some slide-togethers before, but I’m really excited to try making the rhombic spirallohedron pictured above! What is your favorite model on the site?

Last up, Paul recently discovered a great mathematical art applet called Recursive Drawing. The tools are extremely simple. You can make circles and squares. You can stretch these around. But most importantly, you can insert a copy of one of your drawings into itself. And of course then that copy has a copy inside of it, and on and on. With a very simple interface and very simple tools, incredible complexity and beauty can be created.

Recursive Drawing was created by Toby Schachman, an artist and programmer who graduated from MIT and now lives in New York City and attends NYU.  You can watch a demo video below.

Recursive Drawing is one of the first applets on our new Math Art Tools page. We’ll be adding more soon. Any suggestions? Leave them in the comments!

Bon appetit!

Scott Kim, Puzzles, and Games

Welcome to this week’s Math Munch!

Scott Kim

Meet Scott Kim.  He’s loved puzzles ever since he was a kid, so these days he designs puzzles for a living.  He’s been writing puzzles for Discover Magazine for years in a monthly column called “The Boggler.”  Click that link to look through some of his Boggler archives.  Here’s a cool one he wrote in 2002 about hypercubes and the 4th dimension.


In his 11-minute TED talk, Scott tells the story of his career and shares some of his favorite puzzles, games, and ambigrams.  It’s also completely clear how much he really loves what he does (as do I.)

Knights on Horseback – M.C. Escher

I’ve always loved “figure/ground” images, where the leftover space from one shape creates another recognizable shape.  M.C. Escher created some of the most famous and well-known examples of figure/ground art, but Scott Kim took the idea a step further – making an interactive puzzle game based on the ideas.  Naturally, the game is called “Figure Ground,” and it’s delightfully tricky.  You can even create your own levels.  Scott has a whole page of web games.  Go play!

Symmetrical Alphabet – Ambigram by Scott Kim

Still hungry for more Scott Kim?  He gave a presentation for the Museum of Math‘s lecture series, Math Encounters.  You can watch the full-length video here.  You can also watch an interview he did with Vi Hart by clicking here.

Finally, after you read a Math Munch (or right in the middle) do you ever have a question you wish someone could answer or something you want explained?  Or do you ever wish we could help you find more of something you liked in the post?  Well we can do that!  Just leave a comment on the bottom of the page, and the Math Munch team will be very happy to answer.  We’d love to hear from our readers.

Bon appetit!