Monthly Archives: April 2013

TED, Bridges, and Silk

Welcome to this week’s Math Munch!

TEDxNYED pic

The Math Munch team at TEDxNYED

Marjorie Rice

Marjorie Rice | click to watch her interview video

On Saturday, the Math Munch team gave a 16-minute presentation at TEDxNYED about Math Munch!  (Eventually there will be a video, and we’ll be sure to share it with you right away, but you’ll have to wait a month, maybe.)

We started with the story of Marjorie Rice, and in searching for a good picture of her, we came across this wonderful interview in a documentary about Martin Gardner.  It’s so neat to hear her speak about her discoveries.  You can see how proud she is and how much she truly loves math.  Feel free to watch the whole documentary if you like.  I haven’t gotten a chance yet, but I know it’s full of incredible stuff.

In the spirit of TED, I decided to share a few mathematical TED talks.  This one is absolutely fascinating.  In it, mathematician Ron Eglash describes how fractals underly the african designs.  You know how we love fractals.

If you’re hungry for another TED talk, here’s one about connections between music, mathematics, and sonar.

Up next, remember when we wrote about attending last year’s Bridges conference?  Well it happens every year, of course, and this year’s gallery of mathematical art is available online!  Click on one of those images and you get to more of the artists work.  I could easily spend hours staring at this art, trying to understand them, and reading the descriptions and artist statements.  Seriously, there is just way too much cool stuff there, so I’ve picked out a few of my favorites.  Also, I have great news to announce: Chloé Worthington (previously featured) had some of her art accepted to the exhibition!  Congratulations, Chloe!  If you look closely, you’ll see some of my art in there too.  🙂

Bjarne Jespersen

Bjarne Jespersen

Marc Chamberland

Marc Chamberland

Bob Rollings

Bob Rollings

Chloe Worthington

Chloé Worthington

Mehrdad Garousi

Mehrdad Garousi

By the way, if you ever create any mathematical art of your own, we’d love to see it!  Send us an email at mathmunchteam@gmail.com, and maybe we’ll feature your work in an upcoming Math Munch. (Only if you want us too, of course.)

Yuri Vishnevsky

Silk creator Yuri Vishnevsky

Finally, I know many of you like playing around with Symmetry Artist, which can be found on our page of Math Art Tools.  If you like that, then you’ll love Silk!  It’s much the same, but generates a certain kind of whispiness as you draw that looks really cool.  It also lets you spiral your designs toward the center, a feature which Symmetry Artist lacks.  You can download the Silk app for iPad or iPhone, if you like.  Silk was designed by Yuri Vishnevsky, with sound design by Mat Jarvis.  Yuri has agreed to do a Q&A for us, but we haven’t quite finished it just yet.  I’ll upload it as soon as possible, but for now, you can read an interview Mat and Yuri did with a website called Giant Fire Breathing Dragon.

Bon appetit!

Silk1 Silk4 Silk2

 

“Happy Birthday, Euler!”, Project Euler, and Pants

Welcome to this week’s Math Munch!

Did you see the Google doodle on Monday?

Leonhard Euler Google doodleThis medley of Platonic solids, graphs, and imaginary numbers honors the birthday of mathematician and physicist Leonhard Euler. (His last name is pronounced “Oiler.” Confusing because the mathematician Euclid‘s name is not pronounced “Oiclid.”) Many mathematicians would say that Euler was the greatest mathematician of all time – if you look at almost any branch of mathematics, you’ll find a significant contribution made by Euler.

480px-Leonhard_Euler_2Euler was born on April 15, 1707, and he spent much of his life working as a mathematician for one of the most powerful monarchs ever, Frederick the Great of Prussia. In Euler’s time, the kings and queens of Europe had resident mathematicians, philosophers, and scientists to make their countries more prestigious.  The monarchs could be moody, so mathematicians like Euler had to be careful to keep their benefactors happy. (Which, sadly, Euler did not. After almost 20 years, Frederick the Great’s interests changed and he sent Euler away.) But, the academies helped mathematicians to work together and make wonderful discoveries.

Want to read some of Euler’s original papers? Check out the Euler Archive. Here’s a little bit of an essay called, “Discovery of a Most Extraordinary Law of Numbers, Relating to the Sum of Their Divisors,” which you can find under the subject “Number Theory”:

Mathematicians have searched so far in vain to discover some order in the progression of prime numbers, and we have reason to believe that it is a mystery which the human mind will never be able to penetrate… This situation is all the more surprising since arithmetic gives us unfailing rules, by means of which we can continue the progression of these numbers as far as we wish, without however leaving us the slightest trace of any order.

Mathematicians still find this baffling today! If you’re interested in dipping your toes into Euler’s writings, I’d suggest checking out other articles in “Number Theory,” such as “On Amicable Numbers,” or some articles in “Combinatorics and Probability,” like “Investigations on a New Type of Magic Square.”

pe_banner_lightWant to work, like Euler did, on important math problems that will stretch you to make connections and discoveries? Check out Project Euler, an online set of math and computer programming problems. You can join the site and, as you work on the problems, talk to other problem-solvers, contribute your solutions, and track your progress. The problems aren’t easy – the first one on the list is, “Find the sum of all the multiples of 3 and 5 below 1000” – but they build on one another (and are pretty fun).

pants200-8bb43915cd34ea1718d8fe4716cf33c5e60a5a2d-s3

Pants made from a crocheted model of the hyperbolic plane, by Daina Taimina.

Finally, if someone asked you what a pair of pants is, you probably wouldn’t say, “a sphere with three open disks removed.” But maybe you also didn’t know that pants are important mathematical objects!

I ran into a math problem involving pants on Math Overflow (previously). Math Overflow is a site on which mathematicians can ask and answer each other’s questions. The question I’m talking about was asked by Tony Huynh. He knew it was possible to turn pants inside-out if your feet are tied together. (Check out the video below to see it done!) Tony was wondering if it’s possible to turn your pants around, so that you’re wearing them backwards, if your feet are tied together.

Is this possible? Another mathematician answered Tony’s question – but maybe you want to try it yourself before reading about the solution. Answering questions like this about transformations of surfaces with holes in them is part of a branch of mathematics called topology – which Euler is partly credited with starting. A more mathematical way of stating this problem is: is it possible to turn a torus (or donut) with a single hole in it inside-out? Here’s another video, by James Tanton, about turning things inside-out mathematically.

Bon appetit!

MMteam-240x240P.S. – The Math Munch team will be speaking next weekend, on April 27th, at TEDxNYED! We’re really excited to get to tell the story of Math Munch on the big stage. Thank you for being such enthusiastic and curious readers and allowing us to share our love of math with you. Maybe we’ll see some of you there!

We Use Math, Integermania, and Best-of-Seven

Welcome to this week’s Math Munch!

astronaut“When will I use math?” Have you ever asked this question? Well, then you are in for a treat, because the good people of We Use Math have some answers for you! This site was created by the Math Department at Brigham Young University to help share information about career paths that are opened up by studying mathematics. Here’s their introductory video:

The We Use Math site shares write-ups about a wide range of career opportunities that involve doing mathematics. I was glad to learn more about less-familiar mathy careers like technical writing and cost estimation. Also, my brother has studied some operations management in college, so it was great to read the overview of that line of work. In addition, the We Use Math site has pages about recent math discoveries and about unsolved math problems. Check them out!

Next up is one of my long-time favorite websites: Integermania!

Perhaps you’ve heard of the four 4’s problem before. Using four 4’s and some arithmetic operations, can you make the numbers from 1 to 20? Or even higher? Some numbers are easy to make, like 16. It’s 4+4+4+4. Some are sneakier, like 1. One way it can be created is (4+4)/(4+4). But what about 7? Or 19? This is a very common type of problem in mathematics—which math objects of a certain type can be built with limited tools?

swilson21-e1315080873212

Steven J. Wilson

Integermania is a website where people from around the world have submitted number creations made of four small numbers and operations. It’s run by Steven J. Wilson, a math professor at Johnson County Community College in Kansas. (Steven has even more great math resources at his website Milefoot.com)

There are many challenges at Integermania: four 4’s, the first four prime numbers, the first four odds, and even the digits of Ramanujan’s famous taxicab number (1729).

Here are some number creations made of the first four prime numbers. Can you make some of your own?

Here are some number creations made of the first four prime numbers.
Can you make some of your own?

One of my favorite aspects of Integermania is the way it rates number creations by “exquisiteness level“. If a number creation is made using only simple operations—like addition or multiplication—then it’s regarded as more exquisite than if it uses operations like square roots or percentages. I also love how Integermania provides an opportunity for anyone to make their mark in the big world of mathematical research—it’s like scrawling a mathematical “I wuz here!” After years of visiting the site, I just submitted for the first time some number creations of my own. I’ll let you know how it goes, and I’d love to hear about it if you decide to submit, too.

Here are recaps of all the World Series since 1903 from MLB.com

Here are recaps of all the World Series since 1903 from MLB.com

Now coming to the plate: my final link of the week! Monday was the first day of the new Major League Baseball season. I want to share with you a New York Times article from last December. It’s called Keeping Score: Over in Four About a Fifth of the Time. The article digs into the outcomes of all of the World Series championships—not so much who won as how they won. It takes four victories to win a seven-game series, and there are 35 different ways that a best-of-seven series can play out, put in terms of wins and losses for the overall winner. For instance, a clean sweep would go WWWW, while another sequence would be WWLLWW. The article examines which of these win-loss sequences have been the most common in the World Series.

(Can you figure out why there are 35 possible win-loss sequences in a seven-game series? What about for a best-of-five series? And what if we tried to model the outcome of a series by assuming each team has a fixed chance of winning each game?)

worldseriesstats

A clip of the stats that are displayed in the Times article. Click through to see it all.

I was curious to know if the same results held true in other competitions. Are certain win-loss sequences rare across different sports? Are “sweeps” the most common outcome? After sifting through Wikipedia for a while, I was able to compile the statistics about win-loss sequences for hockey’s Stanley Cup Finals. This has been a best-of-seven series since 1939, and it has been played 73 times since then. (It didn’t happen in 2005 because of a lockout.) You can see the results of my research in this document. Two takeaways: sweeps are also the most common result in hockey, but baseball more frequently requires the full seven games to determine a winner.

It could be a fun project to look at other best-of-seven series, like the MLB’s League Championship Series or basketball’s NBA Finals. If you pull that data together, let us know in the comments!

Batter up, and bon appetit!

******

UPDATE (4/4/13): My first set of five number creations was accepted and are now posted on the Ramanujan challenge page. Here are the three small ones! Can you find a more exquisite way of writing 47 than I did?

myintegermania