# World’s Oldest Person, Graphing Challenge, and Escher Sketch

On April 19th, Jiroeman Kimura celebrated his 116th birthday. He was – and still is – the world’s oldest person, and the world’s longest living man – ever. (As far as researchers know, that is. There could be a man who has lived longer that the public doesn’t know about.) The world’s longest living woman was Jeanne Calment, who lived to be 122 and a half!

Most people don’t live that long, and, obviously, only one person can hold the title of “Oldest Person in the World” at any given time. So, you may  be wondering… how often is there a new oldest person in the world? (Take a few guesses, if you like. I’ll give you the answer soon!)

Some mathematicians were wondering this, too, and they went about answering their question in the way they know best: by sharing their question with other mathematicians around the world! In April, a mathematician who calls himself Gugg, asked this question on the website Mathematics Stack Exchange, a free question-and-answer site that people studying math can use to share their ideas with each other. Math Stack Exchange says that it’s for “people studying math at any level.” If you browse around, you’ll see mathematicians asking for help on all kinds of questions, such as this tricky algebra problem and this problem about finding all the ways to combine coins to get a certain amount of money.  Here’s an entry from a student asking for help on trigonometry homework. You might need some specialized math knowledge to understand some of the questions, but there’s often one that’s both interesting and understandable on the list.

Anyway, Gugg asked on Math Stack Exchange, “How often does the oldest person in the world die?” and the community of mathematicians around the world got to work! Several mathematicians gave ways to calculate how often a new person becomes the oldest person in the world. You can read about how they worked it out on Math Stack Exchange, if you like, or on the Smithsonian blog – it’s a good example of how people use math to model things that happen in the world. Oh, and, in case you were wondering, a new person becomes the world’s oldest about every 0.65 years. (Is that around what you expected? It was definitely more often than I expected!)

Next, check out this graph! Yes, that’s a graph – there is a single function that you can make so that when you graph it, you get that.  Crazy – and beautiful! This was posted by a New York City math teacher named Michael Pershan to a site called Daily Desmos, and he challenges you to figure out how to make it!  (He challenged me, too. I worked on this for days.)

Michael made this graph using an awesome free, online graphing program called Desmos. Michael and many other people regularly post graphing challenges on Daily Desmos. Some of them are very difficult (like the one shown above), but some are definitely solvable without causing significant amounts of pain. They’re marked with levels “Basic” and “Advanced.” (See if you can spot contributions from a familiar Math Munch face…)

Here are more that I think are particularly beautiful. If you’re feeling more creative than puzzle-solvey, try making a cool graph of your own! You can submit a graphing challenge of your own to Daily Desmos.

If you’ve got the creative bug, you could also check out a new MArTH tool that we just found called Escher Web Sketch. This tool was designed by three Swiss mathematicians, and it helps you to make intricate tessellations with interesting symmetries – like the ones made by the mathematical artist M. C. Escher. If you like Symmetry Artist and Kali, you’ll love this applet.

Be healthy and happy! Enjoy graphing and sketching! And, bon appetit!

# Circling, Squaring, and Triangulating

Welcome to this week’s Math Munch!

How good are you at drawing circles? To find out, try this circle drawing challenge. There are adorable cat pictures for prizes!

What’s the best score you can get? And hey—what’s the worst score you can get? And how is your score determined? Well, no matter how long the path you draw is, using that length to make a circle would surround the most area. How close your shape gets to that maximum area determines your score.

Do you think this is a good way to measure how circular a shape is? Can you think of a different way?

Dido, Founder and Queen of Carthage.

This idea that a circle is the shape that has the biggest area for a fixed perimeter reminds me of the story of Dido and her famous problem. You can find a retelling of it at Mathematica Ludibunda, a charming website that’s home to all sorts of mathematical stories and puzzles. The whole site is written in the voice of Rapunzel, but there’s a team of authors behind it all. Dido’s story in particular was written by a girl named Christa.

If you have any trouble drawing circles in the applet, you might try using pencil and paper or a chalkboard. I bet if you practice your circling and get good at it, you might even be able to challenge this fellow:

The simple perfect squared square
of smallest order.

Next up is squaring and the incredible Squaring.Net. The site is run by Stuart Anderson, who works at the Reserve Bank of Australia and lives in Sydney.

The site gathers together all of the research that’s been done about breaking up squares and rectangles into squares. It’s both a gallery and an encyclopedia. I love getting to look at the timelines of discovery—to see the progress that’s been made over time and how new things have been discovered even this year! Just within the last month or so, Stuart and Lorenz Milla used computers to show that there are 20566 simple perfect squared squares of order 30. Squaring.Net also has a wonderful links page that can connect you to more information about the history of squaring, as well as some of the delightful mathematical art that the subject has inspired.

Last up this week is triangulating. There are lots of ways to chop up a shape into triangles, and so I’ll focus on one particular way known as a Delaunay triangulation. To make one, scatter some points on the plane. Then connect them up into triangles so that each triangle fits snugly into a circle that contains none of the scattered points.

Fun Fact #1: Delaunay triangulations are named for the Soviet mathematician Boris Delaunay. What else is named for him? A mountain! That’s because Boris was a world-class mountain climber.

Fun Fact #2: The idea of Delaunay triangulations has been rediscovered many times and is useful in fields as diverse as computer animation and engineering.

Here are two uses of Delaunay triangulations I’d like to share with you. The first comes from the work of Zachary Forest Johnson, a cartographer who shares his work at indiemaps.com. You can check out a Delaunay triangulation applet that he made and read some background about this Delaunay idea here. To see how Zach uses these triangulations in his map-making, you’ve gotta check out the sequence of images on this page. It’s incredible how just a scattering of local temperature measurements can be extended to one of those full-color national temperature maps. So cool!

 Zachary Forest Johnson A Delaunay triangulation used to help create a weather map.

Finally, take a look at these images that Jonathan Puckey created. Jonathan is a graphic artist who lives in Amsterdam and shares his work on his website. In 2008 he invented a graphical process that uses Delaunay triangulations and color averaging to create abstractions of images. You can see more of Jonathan’s Delaunay images here.

I hope you find something to enjoy in these circles, squares, and triangles. Bon appetit!

# “Happy Birthday, Euler!”, Project Euler, and Pants

Welcome to this week’s Math Munch!

Did you see the Google doodle on Monday?

This medley of Platonic solids, graphs, and imaginary numbers honors the birthday of mathematician and physicist Leonhard Euler. (His last name is pronounced “Oiler.” Confusing because the mathematician Euclid‘s name is not pronounced “Oiclid.”) Many mathematicians would say that Euler was the greatest mathematician of all time – if you look at almost any branch of mathematics, you’ll find a significant contribution made by Euler.

Euler was born on April 15, 1707, and he spent much of his life working as a mathematician for one of the most powerful monarchs ever, Frederick the Great of Prussia. In Euler’s time, the kings and queens of Europe had resident mathematicians, philosophers, and scientists to make their countries more prestigious.  The monarchs could be moody, so mathematicians like Euler had to be careful to keep their benefactors happy. (Which, sadly, Euler did not. After almost 20 years, Frederick the Great’s interests changed and he sent Euler away.) But, the academies helped mathematicians to work together and make wonderful discoveries.

Want to read some of Euler’s original papers? Check out the Euler Archive. Here’s a little bit of an essay called, “Discovery of a Most Extraordinary Law of Numbers, Relating to the Sum of Their Divisors,” which you can find under the subject “Number Theory”:

Mathematicians have searched so far in vain to discover some order in the progression of prime numbers, and we have reason to believe that it is a mystery which the human mind will never be able to penetrate… This situation is all the more surprising since arithmetic gives us unfailing rules, by means of which we can continue the progression of these numbers as far as we wish, without however leaving us the slightest trace of any order.

Mathematicians still find this baffling today! If you’re interested in dipping your toes into Euler’s writings, I’d suggest checking out other articles in “Number Theory,” such as “On Amicable Numbers,” or some articles in “Combinatorics and Probability,” like “Investigations on a New Type of Magic Square.”

Want to work, like Euler did, on important math problems that will stretch you to make connections and discoveries? Check out Project Euler, an online set of math and computer programming problems. You can join the site and, as you work on the problems, talk to other problem-solvers, contribute your solutions, and track your progress. The problems aren’t easy – the first one on the list is, “Find the sum of all the multiples of 3 and 5 below 1000” – but they build on one another (and are pretty fun).

Pants made from a crocheted model of the hyperbolic plane, by Daina Taimina.

Finally, if someone asked you what a pair of pants is, you probably wouldn’t say, “a sphere with three open disks removed.” But maybe you also didn’t know that pants are important mathematical objects!

I ran into a math problem involving pants on Math Overflow (previously). Math Overflow is a site on which mathematicians can ask and answer each other’s questions. The question I’m talking about was asked by Tony Huynh. He knew it was possible to turn pants inside-out if your feet are tied together. (Check out the video below to see it done!) Tony was wondering if it’s possible to turn your pants around, so that you’re wearing them backwards, if your feet are tied together.

Is this possible? Another mathematician answered Tony’s question – but maybe you want to try it yourself before reading about the solution. Answering questions like this about transformations of surfaces with holes in them is part of a branch of mathematics called topology – which Euler is partly credited with starting. A more mathematical way of stating this problem is: is it possible to turn a torus (or donut) with a single hole in it inside-out? Here’s another video, by James Tanton, about turning things inside-out mathematically.

Bon appetit!

P.S. – The Math Munch team will be speaking next weekend, on April 27th, at TEDxNYED! We’re really excited to get to tell the story of Math Munch on the big stage. Thank you for being such enthusiastic and curious readers and allowing us to share our love of math with you. Maybe we’ll see some of you there!