Tag Archives: graphs

Plate Folding, Birthdays, and Thanksgiving

Welcome to this week’s Math Munch!

Icosahedron made from 4 paper plates. Click for instructions.

Big news this week, but first let’s have a look at some construction projects you can easily do at home using paper plates, paper clips, and some tape. They come to us from wholemovement.com, the website of Bradford Hansen-Smith. It’s not a stretch to say that Bradford is kind of cuckoo for circles, as you can probably tell form this introductory video. Naturally, the website is all about the amazing things you can do and learn from folding circles. Check out his gallery and you’ll see what I mean. Using these instructions and 4 paper plates I made the sculptures in these pictures. Above is an icosahedron with 4 of the 20 triangles left as empty space, and down below you can see the cuboctahedron of sorts. There’s even an instruction video for this one. So grab some cheap plates, fold ’em up, experiment, and send us your pictures.

square face view

triangular face view

Born 11.14.12

OK, now for the big news. Last Wednesday, my daughter was born!!! I’m so so so happy.  In honor of Nora’s 0th birthday (you turn 1 on your 1st birthday, right?), let’s check out some birthday math. Here’s a cool little birthday number trick I found. It’s sort of magical, but it actually works because that tangle of arithmetic actually just multiplies the month by 10,000, the day by 100, and adds those together with the year. Hopefully you can see how this much simpler version works.

Here’s a well-known birthday problem: How many people need to be in a room before it’s likely that two of them share a birthday? If there’s 400 people in a room, then there’s definitely a birthday match, but if there’s 300 it’s almost certain as well. What’s the smallest crowd so that the probability of a match birthday is over 50%? For the answer and analysis, check out this Numberphile video on the subject featuring James Grime or this New York Times article, by Steven Strogatz, a wonderful mathematician and author.

Both of these solutions are actually wrong!  That’s because they make the false assumptions that each day has the same likelihood of being someone’s birthday.  You can see in the graphs above that that’s not true at all! On the left, look how dark the summer months are, and look at how gray the days are around Thanksgiving and Christmas. You can click on the left image for an interactive version, or click on the right for more graphs and analysis.

A Thanksgiving Pie Chart

Finally, I’m incredibly excited for Thanksgiving (my very favorite holiday), and in that spirit, I want to take a few lines to say “thank you” to you, dear reader. THANK YOU! Whether you’re a weekly muncher or a first time reader, it’s great to know you’re out there enjoying the math we share.

Obviously of course, Thanksgiving is also about the food. Delicious delicious food. Yummmmm! So, Vi Hart is making a series of Thanksgiving themed videos to showcase the math of the meal. Enjoy the videos, but be careful. You may get terribly hungry.

Happy Thanksgiving and bon appetit!

Sandpiles, Prime Pages, and Six Dimensions of Color

Welcome to this week’s Math Munch!

Four million grains of sand dropped onto an infinite grid. The colors represent how many grains are at each vertex. From this gallery.

We got our first snowfall of the year this past week, but my most recent mathematical find makes me think of summertime instead. The picture to the right is of a sandpile—or, more formally, an Abelian sandpile model.

If you pour a bucket of sand into a pile a little at a time, it’ll build up for a while. But if it gets too tall, an avalanche will happen and some of the sand will tumble away from the peak. You can check out an applet that models this kind of sand action here.

A mathematical sandpile formalizes this idea. First, take any graph—a small one, a medium sided one, or an infinite grid. Grains of sand will go at each vertex, but we’ll set a maximum amount that each one can contain—the number of edges that connect to the vertex. (Notice that this is four for every vertex of an infinite square grid). If too many grains end up on a given vertex, then one grain avalanches down each edge to a neighboring vertex. This might be the end of the story, but it’s possible that a chain reaction will occur—that the extra grain at a neighboring vertex might cause it to spill over, and so on. For many more technical details, you might check out this article from the AMS Notices.

This video walks through the steps of a sandpile slowly, and it shows with numbers how many grains are in each spot.

A sandpile I made with Sergei’s applet

You can make some really cool images—both still and animated—by tinkering around with sandpiles. Sergei Maslov, who works at Brookhaven National Laboratory in New York, has a great applet on his website where you can make sandpiles of your own.

David Perkinson, a professor at Reed College, maintains a whole website about sandpiles. It contains a gallery of sandpile images and a more advanced sandpile applet.

Hexplode is a game based on sandpiles.

I have a feeling that you might also enjoy playing the sandpile-inspired game Hexplode!

Next up: we’ve shared links about Fibonnaci numbers and prime numbers before—they’re some of our favorite numbers! Here’s an amazing fact that I just found out this week. Some Fibonnaci numbers are prime—like 3, 5, and 13—but no one knows if there are infinitely many Fibonnaci primes, or only finitely many.

A great place to find out more amazing and fun facts like this one is at The Prime Pages. It has a list of the largest known prime numbers, as well as information about the continuing search for bigger ones—and how you can help out! It also has a short list of open questions about prime numbers, including Goldbach’s conjecture.

Be sure to peek at the “Prime Curios” page. It contains intriguing facts about prime numbers both large and small. For instance, did you know that 773 is both the only three-digit iccanobiF prime and the largest three-digit unholey prime? I sure didn’t.

Last but not least, I ran across this article about how a software company has come up with a new solution for mixing colors on a computer screen by using six dimensions rather than the usual three.

Dimensions of colors, you ask?

The arithmetic of colors!

Well, there are actually several ways that computers store colors. Each of them encodes colors using three numbers. For instance, one method builds colors by giving one number each to the primary colors yellow, red, and blue. Another systems assigns a number to each of hue, saturation, and brightness. More on these systems here. In any of these systems, you can picture a given color as sitting within a three-dimensional color cube, based on its three numbers.

A color cube, based on the RGB (red, green, blue) system.

If you numerically average two colors in these systems, you don’t actually end up with the color that you’d get by mixing paint of those two colors. Now, both scientists and artists think about combining colors in two ways—combining colored lights and combining colored pigments, or paints. These are called additive and subtractive color models—more on that here. The breakthrough that the folks at the software company FiftyThree made was to assign six numbers to each color—that is, to use both additive and subtractive ideas at the same time. The six numbers assigned to a given number can be thought of as plotting a point in a six-dimensional space—or inside of a hyper-hyper-hypercube.

I think it’s amazing that using math in this creative way helps to solve a nagging artistic problem. To get a feel for why mixing colors using the usual three-coordinate system is such a problem, you might try your hand at this color matching game. For even more info about the math of color, there’s some interesting stuff on this webpage.

Bon appetit!

Factorization Dance, Vanishing, and Storm Infographics

Welcome to this week’s Math Munch!

Think fast!  How many dots are there in this picture?

This beautiful picture comes to you from Brent Yorgey and Stephen Von Worley.  If you counted the dots, you probably didn’t count them one at a time.  (And, if you did, can you think of another way to count them?)  If you counted them like I did, you noticed that the dots are arranged in rings of five.  Then maybe you noticed that the rings of five are themselves arranged in rings of five.  And then, finally, you may have noticed that those rings are also arranged in rings of five!  How many dots is that?  5x5x5 = 125!

In this blog post, Brent describes how he wrote the computer program that creates these pictures.  The program factors numbers into primes.  Then, starting with the smallest prime factor, the program arranges dots into regular polygons of the appropriate size with dots (or polygons of dots) at the vertices of the polygon.

Here’s how that works for 90.  90’s prime factorization is 2x3x3x5:

As Brent writes in his post, this counting gets much harder to do with numbers that have large prime factors.  For example, here is 183:

From this picture, I can tell that 183 has 3 as a prime factor.  But how many times does 3 go into 183?  It isn’t immediately clear.

When Stephen saw Brent’s creation, he decided the diagrams would be even more awesome if they danced.  And so he created what he calls the Factor Conga.  If you only click on one link today, click that one.  The Factor Conga is beautiful and totally mesmerizing.

For more factor diagrams, check out this post from the Aperiodical.  There’s a link to the factor diagram by Jason Davies that we posted about over the summer.

Next up, a few months ago we posted about the puzzles of Sam Loyd – one of which was a puzzle called Get Off the Earth.  In this puzzle, the Earth spins and – impossibly – one of the men seems to vanish.  This puzzle is a type of illusion called a geometrical vanish.  In a geometrical vanish, an image is chopped into pieces and the pieces are rearranged to make a new image that takes up the same amount of space as the original, but is missing something.

Here’s a video of another geometrical vanish:

No matter the picture, these illusions are baffling for the same reason.  Rearranging the pieces of an image shouldn’t change the image’s area.  And, yet, in these illusions, that’s exactly what seems to happen.

Check out some of these other links to geometrical vanishes.  Print out your own here.  And think about this: Are these illusions math – and, if it so, how?  I came across geometrical vanishes because a friend asked if I thought the Get Off the Earth puzzle was mathematical.  He isn’t convinced.  If you have any ideas that you think can convince him either way, leave them in the comments section!

Finally, the Math Munch team’s home, New York City, (and this writer’s other home, New Jersey) was hit by a hurricane this week.  The city and surrounding areas are still recovering from the storm.  Sandy left millions of people without power and many without homes.  One way people have tried to communicate the magnitude of what happened is to make infographics of the data.  Making a good infographic requires a blend of mathematics, art, and persuasion.  Here some of the most interesting infographics about the storm that I’ve found.  Check out how they use size, placement, and color to communicate information and make comparisons.

This infographic from the New York Times shows the number of power outages in the northeast and their locations in different states. The size of the circle indicates the number of people without power. Why would the makers of this infographic choose circles? Why do you think they chose to place them on a map? What do you think of the overlapping?

This is part of an infographic from the Huffington Post that compares hurricanes Sandy and Katrina. Click on the image to see the rest of the infographic. What conclusions can you draw about the hurricanes from the information?

This is a wind map of the country captured at 10:30 in the morning on October 30th, the day hurricane Sandy hit. The infographic was made by scientist-artists Fernanda Viegas and Martin Wattenberg. It shows how wind is flowing around the United States in real-time. Check out their site (click on this image) to see what the wind is doing right now in your part of the country!

To those in places affected by Hurricane Sandy, be safe.  To all our readers, bon appetit!

Visualizations, Inspirations, and the Super Ultimate Graphing Challenge

Welcome to this week’s Math Munch!

Jason Davies

Meet Jason Davies, a freelance mathematician living in the UK. Growing up in Wales (one of the 4 countries of the United Kingdom) his classes were taught in Welsh. This makes Jason one of only about 611,000 people that speak the language, only 21.7% of the population of Wales! Imagine if only 1/5 of France spoke French!! These statistics are from a 2004 study, so the numbers may have changed a bit, but they still say something interesting don’t they?

Prime Seive

Jason is all about what numbers and pictures can tell us.  Since graduating from Cambridge, he’s been doing all sorts of data visualization and computer science on his own for various companies and IT firms. I originally found Jason through a link to his Prime Seive visualization, but take a look at his gallery and you’re bound to find something beautiful, interesting, interactive, and cool. I’ve linked to some of my favorites below.

Interactive Apollonian Gasket

Rhodonea Curves

Set Partitions

I asked Jason a few questions about his interest in data visualization and math in general. Here’s a tasty little excerpt:

MM: What’s the most important trait for a mathematician to have? Is there one?

JD: Persistance is always useful in maths! I think the stereotype is to be analytical and logical, but in fact there are many other traits that are highly important, for instance communication skills. Mathematics is passed on from person to person, after all, so being able to communicate ideas effectively is dynamite.

MM: Do you have a message you’d like to give to young mathematicians?

JD: The world needs you!

Read the rest in our Q&A with Jason Davies, and you can see all of our interviews on the Q&A page we’ve just created.

Up next, a beautiful and inspiring video from Spain. The video is actually called Insprations, and it comes to us from Etérea Studios, the online home of animator Cristóbal Vila. In the intro he says, “I looked into that enormous and inexhaustible source of inspiration that is Escher and tried to imagine how it could be his workplace, what things would surround an artist like him, so deeply interested in science in general and mathematics in particular.”

I’d die to have an office like this!

It gets better.  Cristóbal added a page explaining all of the wonderful maths in the video. Click to read about Platonic solids, tilings, tangrams, and various works of art by M.C. Escher.

Finally, a nifty new game that explores the relationship between graphs and different kinds of motion. Super Ultimate Graphing Challenge is a game developed by Physics teacher Matthew Blackman to help his students understand the physics and mathematics of motion. You might not understand it all when you start, but keep playing and see what you can make of it. If you need a bit of help or have something to say, post it in our comments, and we’ll happily reply.

Bon appetit!

Bridges, Meander Patterns, and Water Sports

This past week the Math Munch team got to attend the Bridges 2012. Bridges is a mathematical art conference, the largest one in the world. This year it was held at Towson University outside of Baltimore, Maryland. The idea of the conference is to build bridges between math and the arts.

Participants gave lectures about their artwork and the math that inspired or informed it. There were workshop sessions about mathematical poetry and chances to make baskets and bead bracelets involving intricate patterns. There was even a dance workshop about imagining negative-dimensional space! There were also some performances, including two music nights (which included a piece that explored a Fibonacci-like sequence called Narayana’s Cows) and a short film festival (here are last year’s films). Vi Hart and George Hart talked about the videos they make and world-premiered some new ones. And at the center of it all was an art exhibition with pieces from around the world.

The Zen of the Z-Pentomino by Margaret Kepner

Does this piece by Bernhard Rietzl
remind you of a certain sweater?

5 Rhombic Screens by Alexandru Usineviciu

Pythagorean Proof by Donna Loraine

To see more, you should really just browse the Bridges online gallery.

A shot of the gallery exhibition

I know that Paul, Anna, and I will be sharing things with you that we picked up at Bridges for months to come. It was so much fun!

David Chappell

One person whose work and presentation I loved at Bridges is David Chappell. David is a professor of astronomy at the University of La Verne in California.

David shared some thinking and artwork that involve meander patterns. “Meander” means to wander around and is used to describe how rivers squiggle and flow across a landscape. David uses some simple and elegant math to create curve patterns.

Instead of saying where curves sit in the plane using x and y coordinates, David describes them using more natural coordinates, where the direction that the curve is headed in depends on how far along the curve you’ve gone. This relationship is encoded in what’s called a Whewell equation. For example, as you walk along a circle at a steady rate, the direction that you face changes at a contant rate, too. That means the Whewell equation of a circle might look like angle=distance. A smaller circle, where the turning happens faster, could be written down as angle=2(distance).

Look at how the Cauto River “meanders” across the Cuban landscape.

In his artwork, David explores curves whose equations are more complicated—ones that involve multiple sine functions. The interactions of the components of his equations allow for complex but rhythmic behavior. You can create meander patterns of your own by tinkering with an applet that David designed. You can find both the applet and more information about the math of meander patterns on David’s website.

David Chappell’s Meander #6
Make your own here!

When I asked David about how being a scientist affects his approach to making art, and vice versa, he said:

My research focuses on nonlinear dynamics and pattern formation in fluid systems. That is, I study the spatial patterns that arise when fluids are agitated (i.e. shaken or stirred). I think I was attracted to this area because of my interest in the visual arts. I’ve always been interested in patterns. The science allows me to study the underlying physical systems that generate the patterns, and the art allows me to think about how and why we respond to different patterns the way we do.  Is there a connection between how we respond to a visual image and the underlying “rules” that produced the image?  Why to some patterns look interesting, but others not so much?

For more of my Q&A with David, click here. In addition, David will be answering questions in the comments below, so ask away!

Since bridges and meandering rivers are both water-related, I thought I’d round out this post with a couple of interesting links about water sports and the Olympics. My springboard was a site called Maths and Sport: Countdown to the Games.

No wiggle rigs

Arrangements of rowers that are “wiggle-less”

Here’s an article that explores different arrangements of rowers in a boat, focusing on finding ones where the boat doesn’t “wiggle” as the rowers row. It’s called Rowing has its Moments.

Next, here’s an article about the swimming arena at the 2008 Beijing games, titled Swimming in Mathematics.


Paul used to be a competitive diver, and he says there’s an interesting code for the way dives are numbered.  For example, the “Forward 1 ½ Somersaults in Tuck Position” is dive number 103C.  How does that work?  You can read all about it here.  (Degree of difficulty is explained as well.)

Finally, enjoy these geometric patterns inspired by synchronized swimming!

Stay cool, and bon appetit!

Fractions, Sam Loyd, and a MArTH Journal

Welcome to this week’s Math Munch!

Check out this awesome graph:

What is it?  It’s a graph of the Farey Fractions, with the denominator of the (simplified) fraction on the vertical axis and the value of the fraction on the horizontal axis, made by mathematician and professor at Wheelock College Debra K. Borkovitz (previously).  Now, I’d never heard of Farey Fractions before I saw this image – but the graph was so cool that I wanted to learn all about them!

So, what are Farey Fractions, you ask?  Debra writes all about them and the cool visual patterns they make in this post.  To make a list of Farey Fractions you first pick a number – say, 5.  Then, you list all of the fractions between 0 and 1 whose denominators are less than or equal to the number you picked.  So, as Debra writes in her post, for 5 the list of Farey Fractions is:

As Debra writes, there are so many interesting patterns in Farey Fractions – many of which become much easier to see (literally) when you make a visualization of them.  Debra has made several awesome applets using the program GeoGebra, which she links to in her post.  (You can download GeoGebra and make applets of your own by visiting our Free Math Software page.)  These applets really show the power of using graphs and pictures to learn more about numbers.  To play with the applet that made the picture above, click here.  Check out her post to play with another applet, and to read more about the interesting patterns in Farey Fractions.

Next, check out this website devoted to the puzzles of puzzlemaster Sam Loyd.  Sam Loyd was a competitive chess player and professional puzzle-writer who lived at the end of the nineteenth century.  He wrote many puzzles that are still famous today – like the baffling Get Off the Earth puzzle.  Click the link to play an interactive version of the Get Off the Earth puzzle.

The site has links to numerous Sam Loyd puzzles.  Check out the Picture Puzzles, in which you have to figure out what object is described by the picture, or the Puzzleland Puzzles, which feature characters from the fictional place Puzzleland that Sam created.

Snow MArTH, made by MArTHist Eva Hild and others at a snow sculpture event in Colorado. From the Spring, 2011 Hyperseeing.

Finally, take a look at some of the beautiful pictures and fascinating articles in this journal about mathematical art (a.k.a., MArTH) called Hyperseeing.  Hyperseeing is edited by mathematicians and artists Nat Friedman and Ergun Akleman.  Hyperseeing is published by the International Society of the Arts, Mathematics, and Architecture, which Nat founded to encourage education connecting the arts, architecture, and math – which we here at Math Munch love!  In one of his articles, Nat defines hyperseeing as, “Interdisciplinary education… concerned with seeing from multiple viewpoints in a very general sense.  Hyperseeing is a more complete way of seeing.”

There are so many beautiful images to look at and interesting articles to read in Hyperseeing.  Among other things, each edition of Hyperseeing features a mathematical comic by Ergun.  Here are some of my favorite Hyperseeings from the archives:

This edition of Hyperseeing features art made from Latin Squares and “organic geometry” art, among many other things.

This edition of Hyperseeing features crocheted hyperbolic surfaces (which we featured not long ago in this Math Munch!) and sculptures made with a 3-D printer, among many other things.

This is the first edition of Hyperseeing. In it, Nat describes the mission of Hyperseeing and the International Society of the Arts, Mathematics, and Architecture.

Bon appetit!

P.S. – You may have noticed a new thing to click off to the right, below the Favorite Munches.  This is our For Teachers section.  The Math Munch team has put together several pages to describe how we use Math Munch in our classes and give suggestions for how you might use it, too.  Teachers and non-teachers alike may want to check out our new Why Math Munch? page, which gives our mission statement.

P.P.S. – The Math Munch team is going to Bridges on Thursday!  Maybe we’ll see you there.

Squiggles, Spheres, and Taxes

Welcome to this week’s Math Munch!

Check out this cool doodle animation from the blog of Matt Henderson. Matt studied math at Cambridge as an undergrad and now does research on speech and language technology. His idea for a doodle was to start with an equilateral triangle and then encircle it with squiggles until it eventually turned into a square.

Matt Henderson

Matt Henderson

Matt’s triangle-to-square squiggle

Matt has all kinds of beautiful and intricate mathematical images on his blog, many of them animated using computer code. He made a similar squiggle-doodle that evolves a straight line into a profile of his face; an animation of rolling a ball on a merry-go-round; a million dot generator; and many more!

Along the same “lines” as Matt’s squiggle, Ted Theodosopoulos wrote an article in Peer Points reviewing a research paper by Stanford mathematician Ravi Vakil. The title of Ravi’s paper is “The Mathematics of Doodling.”

Ravi’s doodle

Next up, check out this cool visualization of a sphere.

The title of the video is Spherikal and was created by Ion Lucin, a graphic artist in Spain.

Something neat comes out about Ion’s attitude toward learning and sharing in a comment he makes:

“Thanks for appreciating my work. I was thinking the same, not to reveal my secrets, but then, i to learned from the videos and tutorials of others, i have been working with 3D for a year and a half, and all i know about it i learned it by myself, by seeing tutorials, im from fine arts. In a way a feel i must share , like other did and helped me”

What a great attitude!

Another spherical idea comes from a post on one of my favorite websites: MathOverflow, a question-and-answer site for research-level mathematicians…and anyone else! The question I have in mind was posted by Joe O’Rourke, a mathematician at Smith College and one of my favorite posters on MathOverflow. It’s about a certain kind of random walk on a sphere. Check it out!

For this step distance, it looks like a random walk will fill up the whole sphere. What about other step distances?

Again, such a cool picture is created by translating a mathematical scenario into some computer code!

Since this week is when federal income taxes are due, I’ll leave you with a few links about taxes and the federal budget. First, here’s the IRS’s website for kids. (Yes, for real.)

Next, this infographic lets you examine how President Obama’s 2011 budget proposal divvied up funds to all of the different departments and projects of the federal government. Can you find NASA’s budget?

2011budget

On a more personal scale, this applet called “Where did my tax dollars go?” does just that—when you give it a yearly personal income, it will calculate how much of it will go toward different ends.

Finally, this applet lets you tinker with the existing tax brackets and see the effect on total revenue generated for the federal government. Can you find a flat tax rate that would keep total tax revenue the same?

Whew! That was a lot; I hope you didn’t find it too taxing. Bon appetit!