Author Archives: Justin Lanier

Tsoro Yematatu, Fano’s Plane, and GIFs

Welcome to this week’s Math Munch!

Board and pieces for tsoro yematatu.

Here’s a little game with a big name: tsoro yematatu. If you enjoyed Paul’s recent post about tic-tac-toe, I think you’ll like tsoro yematatu a lot.

I ran across this game on a website called Behind the Glass. The site is run by the Cincinnati Art Museum. (What is it with me and art museums lately?) The museum uses Behind the Glass to curate many pieces of African art and culture, including four mathematical games that are played in Africa.

The simplest of these is tsoro yematatu. It has its origin in Zimbabwe. Like tic-tac-toe, the goal is to get three of your pieces in a row, but the board is “pinched” and you can move your pieces. Here’s an applet where you can play a modified version of the game against a computer opponent. While the game still feels similar to tic-tac-toe, there are brand-new elements of strategy.

Tsoro yematatu reminds me of one that I played as a kid called Nine Men’s Morris. I learned about it and many other games—including go—from a delightful book called The Book of Classic Board Games. Kat Mangione—a teacher, mom, and game-lover who lives in Tennessee—has compiled a wonderful collection of in-a-row games. And wouldn’t you know, she includes Nine Men’s Morris, tsoro yematatu, tic-tac-toe, and dara—another of the African games from Behind the Glass.

The Fano plane.

The Fano plane.

The board for tsoro yematatu also reminds me of the Fano plane. This mathematical object is very symmetric—even more than meets the eye. Notice that each point is on three lines and that each line passes through three points. The Fano plane is one of many projective planes—mathematical objects that are “pinched” in the sense that they have vanishing points. They are close cousins of perspective drawings, which you can check out in these videos.

Can you invent a game that can be played on the Fano plane?

Closely related to the Fano plane is an object called the Klein quartic. They have the same symmetries—168 of them. Felix Klein discovered not only the Klein quartic and the famous Klein bottle, but also the gorgeous Kleinian groups and the Beltrami-Klein model. He’s one of my biggest mathematical heroes.

The Klein quartic.

The Klein quartic.

This article about the Klein quartic by mathematician John Baez contains some wonderful images. The math gets plenty tough as the article goes on, but in a thoughtfully-written article there is something for everyone. One good way to learn about new mathematics is to read as far as you can into a piece of writing and then to do a little research on the part where you get stuck.

If you’ve enjoyed the animation of the Klein quartic, then I bet my last find this week will be up your alley, too. It’s a Tumblr by David Whyte and Brian Fitzpatrick called Bees & Bombs. David and Brian create some fantastic GIFs that can expand your mathematical imagination.

This one is called Pass ‘Em On. I find it entrancing—there’s so much to see. You can follow individual dots, or hexagons, or triangles. What do you see?

tumblr_mqgfq5XLjI1r2geqjo1_500

This one is called Blue Tiles. It makes me wonder what kind of game could be played on a shape-shifting checkerboard. It also reminds me of parquet deformations.

tumblr_mnor4buGS01r2geqjo1_500

A few of my other favorites are Spacedots and Dancing Squares. Some of David and Brian’s animations are interactive, like Pointers. They have even made some GIFs that are inspired by Tilman Zitzmann’s work over at Geometry Daily (previously).

I hope you enjoy checking out all of these new variations on some familiar mathematical objects. Bon appetit!

Reflection Sheet – Tsoro Yematatu, Fano’s Plane, and GIFs

Partial Cubes, Open Cubes, and Spidrons

Welcome to this week’s Math Munch!

Recently the videos that Paul and I made about the Yoshimoto Cube got shared around a bit on the web. That got me to thinking again about splitting cubes apart, because the Yoshimoto Cube is made up of two pieces that are each half of a cube.

A part of Wall Drawing #601 by Sol LeWitt

A part of Wall Drawing #601
by Sol LeWitt

A friend of mine once shared with me some drawings of cubes by the artist Sol LeWitt. The cubes were drawn as solid objects, but parts of them were cut away and removed. It was fun trying to figure out what fraction of a cube remained.

On the web, I found a beautiful image that Sol made called Wall Drawing #601. In the clipping of it to the left, I see 7/8 of a cube and 3/4 of a cube. Do you? You can view the whole of this piece by Sol on the website of the Greater Des Moines Public Art Foundation.

The Cube Vinco by Vaclav Obsivac.

The Cube Vinco by Vaclav Obsivac.

There are other kinds of objects that break a cube into pieces in this way, like this tricky puzzle by Vaclav Obsivac and this “shaved” Rubik’s cube modification. Maybe you’ll design a cube dissection of your own!

As I further researched Sol LeWitt’s art, I found that he had investigated partial cubes in other ways, too. My favorite of Sol’s tinkerings is the sculpture installation called “Variations of Incomplete Cubes“. You can check out this piece of artwork on the SFMOMA site, as well as in the video below.

In the video, a diagram appears that Sol made of all of the incomplete open cubes. He carefully listed out and arranged these pictures to make sure that he had found them all—a very mathematical task. It reminds me of the list of rectangle subdivisions I wrote about in this post.

sollewitt_variationsonincompleteopencubes_1974

Sol’s diagram got me to thinking and making: what other shapes might have interesting “incomplete open” variations? I started working on tetrahedra. I think I might try to find and make them all. How about you?

Two open tetrahedra I made. Can you find some more?

Two open tetrahedra I made. Can you find some more?

Finally, as I browsed Google Images for “half cube”, one image in particular jumped out at me.

half-cube-newnweb

What are those?!?!

Dániel's original spidron from 1979

Dániel’s original spidron from 1979

These lovely rose-shaped objects are called spidrons—or more precisely, they appear to be half-cubes built out of fold-up spidrons. What are spidrons? I had never heard of them, but there’s one pictured to the right and they have their own Wikipedia article.

The first person who modeled a spidron was Dániel Erdély, a Hungarian designer and artist. Dániel started to work with spidrons as a part of a homework assignment from Ernő Rubik—that’s right, the man who invented the Rubik’s cube.

A cube with spidron faces.

A cube with spidron faces.

Two halves of an icosahedron.

Two halves of an icosahedron.

A hornflake.

A hornflake.

Here are two how-to videos that can help you to make a 3D spidron—the first step to making lovely shapes like those pictured above. The first video shows how to get set up with a template, and the second is brought to you by Dániel himself! Watching these folded spidrons spiral and spring is amazing. There’s more to see and read about spidrons in this Science News article and on Dániel’s website.

And how about a sphidron? Or a hornflake—perhaps a cousin to the flowsnake? So many cool shapes!

To my delight, I found that Dániel has created a video called Yoshimoto Spidronised—bringing my cube splitting adventure back around full circle. You’ll find it below. Bon appetit!

Reflection Sheet – Partial Cubes, Open Cubes, and Spidrons

MoMA, Pop-Up Books, and A Game of Numbers

Welcome to this week’s Math Munch!

Thank you so much to everyone who participated in our Math Munch “share campaign” over the past two weeks. Over 200 shares were reported and we know that even more sharing happened “under the radar”. Thanks for being our partners in sharing great math experiences and curating the mathematical internet.

Of course, we know that the sharing will continue, even without a “campaign”. Thanks for that, too.

All right, time to share some math. On to the post!

N_JoshiTo kick things off, you might like to check out our brand-new Q&A with Nalini Joshi. A choice quote from Nalini:

In contrast, doing math was entirely different. After trying it for a while, I realized that I could take my time, try alternative beginnings, do one step after another, and get to glimpse all kinds of possibilities along the way.

By Philippe Decrauzat.

By Philippe Decrauzat.

I hope the math munches I share with you this week will help you to “glimpse all kinds of possibilities,” too!

Recently I went to the Museum of Modern Art (MoMA) in New York City. (Warning: don’t confuse MoMA with MoMath!) On display was an exhibit called Abstract Generation. You can view the pieces of art in the exhibit online.

As I browsed the galley, the sculptures by Tauba Auerbach particularly caught my eye. Here are two of the sculptures she had on display at MoMA:

CRI_244599 CRI_244605

Just looking at them, these sculptures are definitely cool. However, they become even cooler when you realize that they are pop-up sculptures! Can you see how the platforms that the sculptures sit on are actually the covers of a book? Neat!

Here’s a video that showcases all of Tauba’s pop-ups in their unfolding glory. Why do you think this series of sculptures is called [2,3]?

This idea of pop-up book math intrigued me, so I started searching around for some more examples. Below you’ll find a video that shows off some incredible geometric pop-ups in action. To see how you can make a pop-up sculpture of your own, check out this how-to video. Both of these videos were created by paper engineer Peter Dahmen.

Taura Auerbach.

Tauba Auerbach.

Tauba got me thinking about math and pop-up books, but there’s even more to see and enjoy on her website! Tauba’s art gives me new ways to connect with and reimagine familiar structures. Remember our post about the six dimensions of color? Tauba created a book that’s a color space atlas! The way that Tauba plays with words in these pieces reminds me both of the word art of Scott Kim and the word puzzles of Douglas Hofstadter. Some of Tauba’s ink-on-paper designs remind me of the work of Chloé Worthington. And Tauba’s piece Componants, Numbers gives me some new insight into Brandon Todd Wilson’s numbers project.

0108 MM MM-Tauba-Auerbach-large

This piece by Tauba is a Math Munch fave!

For me, both math and art are all about playing with patterns, images, structures, and ideas. Maybe that’s why math and art make such a great combo—because they “play” well together!

Speaking of playing, I’d like to wrap up this week’s post by sharing a game about numbers I ran across recently. It’s called . . . A Game of Numbers! I really like how it combines the structure of arithmetic operations with the strategy of an escape game. A Game of Numbers was designed by a software developer named Joseph Michels for a “rapid” game competition called Ludum Dare. Here’s a Q&A Joseph did about the game.

A Game of Numbers.

A Game of Numbers.

If you enjoy A Game of Numbers, maybe you’ll leave Joseph a comment on his post about the game’s release or drop him an email. And if you enjoy A Game of Numbers, then you’d probably enjoy checking out some of the other games on our games page.

Bon appetit!

PS Tauba also created a musical instrument called an auerglass that requires two people to play. Whooooooa!

Reflection Sheet – MoMA, Pop-Up Books, and A Game of Numbers