Tag Archives: art

Zentangle, Graph Paper, and Pancake Art

My recent doodling.

Some recent doodling, by me.

Welcome to this week’s Math Munch!

As you start a new school year, you might be looking for some new mathy doodle games to play in the margins of your notebooks. Doodling helps me to listen sometimes, and I love making neat patterns. I especially like seeing what new shapes I can make.

This summer I was very happy to run across Zentangle®—”an easy-to-learn, relaxing, and fun way to create beautiful images by drawing structured patterns.” I’ve learned a lot about Zentangle from a blog called Tangle Bucket by Sandy Hunter. She shares how to doodle snircles, snafoozles, and oodles. There’s a whole dictionary of zentangle shapes over at tanglepatterns.com.

My favorite idea in Zentangle is trying to combine two kinds of designs. Sometimes this is described as one pattern “versus” another one. For instance, check out these:

RPvsA RIvsJ

Maybe you’ll pick some tangle patterns to combine with each other. If you try some, maybe you’ll share them in our Readers’ Gallery.

Sandy writes:

It’s so true that the more I tangle, the more I see the potential in patterns all around me. I catch myself mentally deconstructing them (whether I want to or not) to figure out if they can be broken down into simple steps without too much effort. That’s the trademark of a good tangle pattern.

Try some of Sandy’s weekly challenges, or check out Tiffany Lovering’s time-lapse videos—here’s one with music and one with an interview. Can you learn the names of any of the shapes she creates? I spy a Rick’s Paradox. There are lots of ways to begin zentangling—I hope you enjoy giving it a try.

Squares and dots and crosses, oh my!

Squares & dots & crosses, oh my!

If zentangling is too freeform for your doodling tastes, then let me share with you one of my longtime favorite websites. I’ve used it for years to help me to do math and to teach math, and it’s great for math doodling, too. I might even call it a trusty friend, one that I met one day through the simple online search: “free online graph paper”.

That’s right, it’s Free Online Graph Paper.

Something I love about the site is that it lets you design different aspects of your graph paper. Then you can print it out. First you get to decide what kind of grid you would like: square? triangular? circular? Then you get to tinker with lots of variables, like how big the grid cells are, how dark the lines are, and what color they are. And more!

Free Online Graph Paper was created by Kevin MacLeod, who composes music and shares it for free. That way other people can use it for creative projects. That’s really awesome! I enjoyed listening to Kevin’s “Winner Winner“. It’s always good to be reminded that everything you use or enjoy was almost certainly made by a person—including custom graph paper websites!

A 7/3 star spirocake.

A 7/3 star spirocake.

Last up this week is some doodly math that you can really munch on. Everyone knows that breakfast is the most important meal of the day and that the most important food group is roulette curves.

To get your daily recommended allowance of groovy math, look no further than the edible doodles of Nathan Shields and his family over at Saipancakes.

I can wait until the Shields family tackles the cissoid of Diocles.

Bon appetit!

Zippergons, High Fashion, and Really Big Numbers

Welcome to this week’s Math Munch!

Bill Thurston

Bill Thurston

Recently I attended a conference in memory of Bill Thurston. Bill was one of the most imaginative and influential mathematicians of the second half of the twentieth century. He worked with many mathematicians on projects and had many students before he passed away in the fall of 2012 at the age of 65. You can read Bill’s obituary in the New York Times here.

Bill worked where geometry and topology meet. In fact, Bill throughout his career showed that there are rich connections between the two fields that no one thought was possible. For instance, it’s an amazing fact that every surface—no matter how bumpy or holey or twisted—can be given a nice, symmetric curvature. A uniform geometry, it’s called. This was proven by Henri Poincaré in 1907. It was thought that 3D spaces would be far too complicated to be behave according to a similar rule. But Bill had a vision and a conjecture—that every 3D space can be divided into parts that can be given uniform geometries. To give you a flavor of these ideas, here’s a video of Bill describing some unusual and fabulous 3D spaces.

Any surface can be given a nice, symmetric geometry.

Any surface can be given a uniform geometry. Even a bunny. Another video.

As you can probably tell, visualizing and experiencing math was very important to Bill. He even taught a course with John Conway called Geometry and the Imagination. Bill often used computers to help himself see the math he was thinking about, and he enjoyed making hands-on models as well. Beginning in spring of 2010, Bill and Kelly Delp of Ithaca College worked out an idea. Usually all of the curving or turning of a polyhedron is concentrated at the vertices. Most of a cube is flat, but there’s a whole lot of pinch at the corners. What if you could spread that pinching out along the edges? And if you could, wouldn’t longer and perhaps wiggly edges help spread it even better? Yes and yes! You can see some examples of these “zippergons” that Bill and Kelly imagined and made in this gallery and read about them in their Bridges article.

A zippergon based on an octahedron.

A paper octahedron zippergon.

Icosadodecahedron.

A foam icosadodecahedron zippergon.

One of Bill’s last collaborations happened not with a mathematician but with a fashion designer. Dai Fujiwara, a noted creator of high fashion in Tokyo, got inspired by some of Bill’s illustrations. In collaboration with Bill, Dai created eight outfits. Each one was based on one of the eight Thurston geometries. You can see the result of their work together in this video and read more about it in this article.

Isn’t it amazing how creative minds in very different fields can learn from each other and create something together?

Richard Evan Schwartz (self-portrait)

Richard Evan Schwartz (self-portrait)

Richard Evan Schwartz was one of the speakers at the conference honoring Bill. Rich studied with Bill at Princeton and now is a math professor at Brown University.

Like Bill, Rich’s work can be highly visual and playful, and he often taps the power of computers to visualize and analyze mathematical structures. There’s lots to explore on Rich’s website. Check out these applets he has made, including ones on Poncelet’s Porism, the Euclidean algorithm (previously), and a game called Lucy & Lily (JAVA required). I love how Rich shares some of his earliest applet-making efforts, like Click On A Triangle To Change Its Color. It’s motivating to see that even an accomplished mathematician like Rich began with the basics of programming—a place where any of us can start!

Screen Shot 2014-07-23 at 2.54.37 AMOn Rich’s site you’ll also find information about his project “Counting on Monsters“. And you should definitely make time to read some of the conversations that Rich has had with his five-year-old daughter Lucy.

Recently Rich published a wonderful new book for kids called “Really Big Numbers“. It is a colorful romp through larger and larger numbers and layers of abstraction, with evocative images to light the way. Check out the trailer for “Really Big Numbers” below!

Do you have a question for Rich—about his book, or about the math that he does, or about his life, or about Bill? Then send it to us in the form below and we’ll try to include it in our interview with him!

EDIT: Thanks for all your questions! Our Q&A with Rich will be posted soon.

Diana and Rich

Diana and Rich

Diana and Bill

Diana and Bill

Bill taught Rich, and Rich in turn taught Diana Davis, whose Dance Your PhD video we featured a while back. In fact, Bill’s influence on mathematics can be seen throughout many of our posts on Math Munch. Bill collaborated with Daina Taimina on hyperbolic crochet projects. He taught Jeff Weeks and helped inspire the games and software Jeff created. Bill oversaw the production of the film Outside In about the eversion of a sphere. He even coined the mathematical term “pair of pants.”

Bill’s vision of mathematics will live on in many people. That could include you, if you’d like. It’s just as Bill wrote:

In short, mathematics only exists in a living community of mathematicians that spreads understanding and breaths life into ideas both old and new.

Bon appetit!

Tangent Spaces, Transplant Matches, and Golyhedra

Welcome to this week’s Math Munch!

You might remember our post on Tilman Zitzmann’s project called Geometry Daily. If you haven’t seen it before, go check it out now! It will help you to appreciate Lawrie Cape’s work, which both celebrates and extends the Geometry Daily project. Lawrie’s project is called Tangent Spaces. He makes Tilman’s geometry sketches move!

A box of rays, by Tilman

A box of rays, by Tilman

A box of rays, by Lawrie.

A box of rays, by Lawrie

409 66 498

Not only do Lawrie’s sketches move, they’re also interactive—you can click on them, and they’ll move in response. All kinds of great mathematical questions can come up when you set a diagram in motion. For instance, I’m wondering what moon patterns are possible to make by dragging my mouse around—and if any are impossible. What questions come up for you as you browse Tangent Spaces?

Next up, Dorry Segev and Sommer Gentry are a doctor and a mathematician. They collaborated on a new system to help sick people get kidney transplants. They are also dance partners and husband and wife. This video shares their amazing, mathematical, and very human story.

Dorry and Sommer’s work involves building graphs, kind of like the game that Paul posted about last week. Thinking about the two of them together has been fun for me. You can read more about the life-saving power of Kidney Paired Donation on optimizedmatch.com.

Last up this week, here’s some very fresh math—discovered in the last 24 hours! Joe O’Rourke is one of my favorite mathematicians. (previously) Joe recently asked whether a golyhedron exists. What’s a golyhedron? It’s the 3D version of a golygon. What’s a golygon? Glad you asked. It’s a grid polygon that has side lengths that grow one by one, from 1 up to some number. Here, a diagram will help:

The smallest golygon. It has sides of lengths 1 through 8.

The smallest golygon. It has sides of lengths 1 through 8.

A golyhedron is like this, but in 3D: a grid shape that has one face of each area from 1 up to some number. After tinkering around some with this new shape idea, Joe conjectured that no golyhedra exist. It’s kind of like coming up with the idea of a unicorn, but then deciding that there aren’t any real ones. But Joseph wasn’t sure, so he shared his golyhedron shape idea on the internet at MathOverflow. Adam P. Goucher read the post, and decided to build a golyhedron himself.

And he found one!

The first ever golyhedron, by Adam P. Goucher

The first ever golyhedron, by Adam P. Goucher

Adam wrote all about the process of discovering his golyhedron in this blog post. I recommend it highly.

And the story and the math don’t stop there! New questions arise—is this the smallest golyhedron? Are there types of sequences of face sizes that can’t be constructed—for instance, what about a sequence of odd numbers? Curious and creative people, new discoveries, and new questions—that’s how math grows.

If this story was up your alley, you might enjoy checking out the story of holyhedra in this previous post.

Bon appetit!

Fullerenes, Fibonacci Walks, and a Fourier Toy

Welcome to this week’s Math Munch!

Stan and James

Stan and James

Earlier this month, neuroscientists Stan Schein and James Gayed announced the discovery of a new class of polyhedra. We’ve often posted about Platonic solids here on Math Munch. The shapes that Stan and James found have the same symmetries as the icosahedron and dodecahedron, and they also have all equal edge lengths.

One of Stan and James's shapes, made of equilateral pentagons and hexagons.

One of Stan and James’s shapes, made of equilateral pentagons and hexagons.

These new shapes are examples of fullerenes, a kind of shape named after the geometer, architect, and thinker Buckminster Fuller. In the 1980s, chemists discovered that molecules made of carbon can occur in polyhedral shapes, both in the lab and in nature. Stan and James’s new fullerenes are modifications of some existing shapes first described in 1937 by Michael Goldberg. The faces of Goldberg’s shapes were warped, not flat, and Stan and James showed that flattening can be achieved—thus turning Goldberg’s shapes into true polyhedra—while also having all equal edge lengths. There’s great coverage of Stan and James’s discovery in this article at Science News and a fascinating survey of the media’s coverage of the discovery by Adam Lore on his blog. Adam’s post includes an interview with Stan!

Next up—how much fun is it to find a fractal that’s new to you? That happened to me recently when I ran across the Fibonacci word fractal.

A portion of a Fibonacci word curve.

A portion of a Fibonacci word curve.

Fibonacci “words”—really just strings of 0’s and 1’s—are constructed kind of like the numbers in the Fibonacci sequence. Instead of adding numbers previous numbers to get new ones, we link up—or “concatenate”—previous words. The first few Fibonacci words are 1, 0, 01, 010, 01001, and 01001010. Do you see how new words are made out of the two previous ones?

Here’s a variety of images of Fibonacci word fractals, and you can find more details about the fractal in this article. The infinite Fibonacci word has an entry at the OEIS, and you can find a Fibonacci word necklace on Etsy. Dale Gerdemann, a linguist at the University of Tübingen, has a whole series of videos that show off patterns created out of Fibonacci words. Here is one of my favorites:

Last but not least this week, check out this groovy applet!

Lucas's applet showing the relationship between epicycles and Fourier series

Lucas’s applet showing the relationship between epicycles and Fourier series

A basic layout of Ptolemy's model, including epicycles.

A basic layout of Ptolemy’s model, including epicycles.

Sometime around the year 200 AD, the astronomer Ptolemy proposed a way to describe the motion of the sun, moon, and planets. Here’s a video about his ideas. Ptolemy relied on many years of observations, a new geometrical tool we call “trigonometry”, and a lot of ingenuity. He said that the sun, moon, and planets move around the earth in circles that moved around on other circles—not just cycles, but epicycles. Ptolemy’s model of the universe was incredibly accurate and was state-of-the-art for centuries.

Joseph Fourier

Joseph Fourier

In 1807, Joseph Fourier turned the mathematical world on its head. He showed that periodic functions—curves with a repeated pattern—can be built by adding together a very simple class of curves. Not only this, but he showed that curves created in this way could have breaks and gaps even though they are built out of continuous curves called “sine” and “cosine”. (Sine and cosine are a part of the same trigonometry that Ptolemy helped to found.) Fourier series soon became a powerful tool in mathematics and physics.

A Fourier series that converges to a discontinuous function.

A Fourier series that converges to a discontinuous function.

And then in the early 21st century Lucas Vieira created an applet that combines and sets side-by-side the ideas of Ptolemy and Fourier. And it’s a toy, so you can play with it! What cool designs can you create? We’ve featured some of Lucas’s work in the past. Here is Lucas’s short post about his Fourier toy, including some details about how to use it.

Bon appetit!

Light Bulbs, Lanterns, and Lights Out

Welcome to this week’s Math Munch!

thomas-edison

Edison with his light bulb.

On this day in 1880, Thomas Edison was given a patent for his most famous bright idea—the light bulb.

Edison once said, “Genius is one per cent inspiration, ninety-nine per cent perspiration”—a good reminder that putting in some work is important both in math and in life. He also said, “We don’t know a millionth of one percent about anything.” A humbling thought. Also, based on that quote, it sounds like Edison might have had a use for permilles or even permyraids in addition to percents!

Mike's octahedron.

Mike’s octahedron-in-a-light-buld.

In celebration of this illustrious anniversary, I’d like to share some light mathematical fare relating to, well, light bulbs. For starters, J. Mike Rollins of North Carolina has created each of the Platonic solids inside of light bulbs, ship-in-a-bottle style. Getting just the cube to work took him the better part of twelve hours! Talk about perspiration. Mike has also made a number of lovely Escher-inspired woodcuts. Check ’em out!

Evelyn's Schwartz lantern.

Evelyn’s Schwartz lantern.

Next up is a far-out example from calculus that’s also a good idea for an art project. It’s called the Schwartz lantern. I found out about this amazing object last fall when Evelyn Lamb tweeted and blogged about it.

The big idea of calculus is that we can find exact answers to tough problems by setting up a pattern of approximations that get better and better and then—zoop! take the process to its logical conclusion at infinity. But there’s a catch: you have to be careful about how you set up your pattern!

A "nicely" triangulated cylinder.

A “nicely” triangulated cylinder.

For example, if you take a cylinder and approximate its surface with a bunch of triangles carefully, you’ll end up with a surface that matches the cylinder in shape and size. But if you go about the process in a different way, you can end up with a surface that stays right near the cylinder but that has infinite area. That’s the Schwartz lantern, first proposed by Karl Hermann Amandus Schwarz of Cauchy-Schwartz fame. The infinite area happens because of all the crinkles that this devilish pattern creates. For some delightful technical details about the lantern’s construction, check out Evelyn’s post and this article by Conan Wu.

Maybe you’ll try folding a Schwartz lantern of your own. There’s a template and instructions on Conan’s blog to get you started. You’ll be glowing when you finish it up—especially if you submit a photo of it to our Readers’ Gallery. Even better, how about a video? You could make the internet’s first Schwartz lantern short film!

Robert Torrence and his Lights Out puzzle.

Robert and his Lights Out puzzle.

At the MOVES Conference last fall, Bruce Torrence of Randolf-Macon College gave a talk about the math of Lights Out. Lights Out is a puzzle—a close relative of Ray Ray—that’s played on a square grid. When you push one of the buttons in the grid it switches on or off, and its neighbors do, too. Bruce and his son Robert created an extension of this puzzle to some non-grid graphs. Here’s an article about their work and here’s an applet on the New York Times website where you can play Lights Out on the Peterson graph, among others. You can even create a Lights Out puzzle of your own! If it’s more your style, you can try a version of the original game called All Out on Miniclip.

The original Lights Out handheld game from 1995.

The original Lights Out handheld game from 1995.

There’s a huge collection of Lights Out resources on Jaap’s Puzzle Page (previously), including solution strategies, variations, and some great counting problems. Lights Out and Ray Ray are both examples of what’s called a “sigma-plus game” in the mathematical literature. Just as a bonus, there’s this totally other game called Light Up. I haven’t solved a single puzzle yet, but my limitations shouldn’t stop you from trying. Perspiration!

All this great math work might make you hungry, so…bon appetit!

Math Meets Art, Quarto, and Snow!

Welcome to this week’s Math Munch!

article-0-19F9E81700000578-263_634x286… And, if you happen to write the date in the European way (day/month/year), happy Noughts and Crosses Day! (That’s British English for Tic-Tac-Toe Day.) In Europe, today’s date is 11/12/13– and it’s the last time that the date will be three consecutive numbers in this century! We in America are lucky. Our last Noughts and Crosses Day was November 12, 2013 (11/12/13), and we get another one next year on December 13 (12/13/14). To learn more about Noughts and Crosses Day and find out about an interesting contest, check out this site. And, to our European readers, happy Noughts and Crosses Day!

p3p13Speaking of Noughts and Crosses (or Tic-Tac-Toe), I have a new favorite game– Quarto! It’s a mix of Tic-Tac-Toe and another favorite game of mine, SET, and it was introduced to me by a friend of mine. It’s quite tricky– you’ll need the full power of your brain to tackle it. Luckily, there are levels, since it can take a while to develop a strategy. Give it a try, and let us know if you like it!

BRUCKER-ICS-DARKRYE-SQUARE

Looking to learn about some new mathematical artists? Check out this article, “When Math Meets Art,” from the online magazine Dark Rye. It profiles seven mathematical artists– some of whom we’ve written about (such as Erik and Martin Demaine, of origami fame, and Henry Segerman), and some of whom I’ve never heard of. The work of string art shown above is by artist Adam Brucker, who specializes in making “unexpected” curves from straight line segments.

gauss17_smallAnother of my favorites from this article is the work of Robert Bosch. One of his specialities is making mosaics of faces out of tiles, such as dominoes. The article features his portrait of the mathematician Father Sebastien Truchet made out of the tiles he invented, the Truchet tiles. Clever, right? The mosaic to the left is of the great mathematician Gauss, made out of dominoes. Check out Robert’s website to see more of his awesome art.

Finally, it snowed in New York City yesterday. I love when it snows for the first time in winter… and that got me wanting to make some paper snowflakes to celebrate! Here’s a video by Vi Hart that will teach you to make some of the most beautiful paper snowflakes.

Hang them on your windows, on the walls, or from the ceiling, and have a very happy wintery day! Bon appetit!

Isomorphisms in Five, Parquet Deformations, and POW!

Welcome to this week’s Math Munch!

Here’s a catchy little video. It’s called “Isomorphisms in Five.” Can you figure out why? The note posted below the video says:

An isomorphism is an underlying structure that unites outwardly different mathematical expressions. What underlying structure do these figures share? What other isomorphisms of this structure will you discover?

One of the reasons I LOVE this video is because I really like how the shapes change with the music– which is played in a very interesting time signature. I also love how you can learn a lot about the different growing shape patterns by comparing them. Watch how they grow as the video flips from pattern to pattern. What do you notice? What does the music tell you about their growth?

This video is by a math educator from North Carolina named Stuart Jeckel. The only thing written about him on his “About” page is, “The Art of Math”– so he’s a bit of a mystery! He has three more beautiful videos, all of which present little puzzles for you to solve. Check them out!

(Five-four isn’t a common time-signature for music, but it makes some great pieces. Check out this particularly awesome one. Anyone want to try making a growing shape pattern video to this tune?)

parquet-10

Here is an example of one of my favorite types of geometric patterns– the parquet deformation. To make one, you start with a tessellation. Then you change it- very gradually- until you’ve made a completely different tessellation that’s connected by many tiny steps to the original one.

I love to draw them. It’s challenging, but full of surprises. I never know what it’s going to look like in the end.

2012_10_31-par5Want to try making your own? Check out this site by the professors/architects Tuğrul Yazar and Serkan Uysal. They had one of their classes map out how some different parquet deformations are made. They mostly used computers, but you could follow their instructions by hand, if you like. The image above is a map for the first deformation I showed.

Click on this link to see some awesome deformations made out of tiles. Aren’t they beautiful? And here’s one made by mathematical artist Craig Kaplan. It has a great fractal quality to it:

hilbert_ih62_a

Finally, here’s something I’ve been meaning to share with you for ages! Do you ever crave a good puzzle and aren’t sure where to find one? Look no farther than the Saint Ann’s School Problem of the Week! Each week, math teacher Richard Mann writes a new awesome problem and posts it on this website. Here’s this week’s problem:

For November 26, 2013– In the picture below, find the shaded right triangle marked A, the equilateral triangle marked B and the striped regular hexagon marked C. Six students make the following statements about the picture below: Anne says “I can find an equilateral triangle three times the area of B.”  Ben says I can find an equilateral triangle four times the area of B.” Carol says, “I can find a find a right triangle triple the area of A.” Doug says, “I can find a right triangle five times the area of A.” Eloise says, “I can find a regular hexagon double the area of C.” Frank says, “I can find a regular hexagon three times the area of C.” Which students are undoubtedly mistaken?

30- 60-90

If you solve this week’s problem, send us a solution!

Bon appetit!