# Squircles, Coloring Books, and Snowfakes

Welcome to this week’s Math Munch!

Squares and circles are pretty different. Squares are boxy and have their feet firmly on the ground. Circles are round and like to roll all over the place.

Superellipses.

Since they’re so different, people have long tried to bridge the gap between squares and circles. There’s an ancient problem called “squaring the circle” that went unsolved for thousands of years. In the 1800s, the gap between squares and circles was explored by Gabriel Lamé. Gabriel invented a family of curves that both squares and circles belong to. In the 20th century, Danish designer Piet Hein gave Lamé’s family of curves the name superellipses and used them to lay out parts of cities. One particular superellipse that’s right in the middle is called a squircle. Squircles have been used to design everything from dinner plates to touchpad buttons.

The space of superellipsoids.

Piet had the following to say about the gap between squares and circles:

Things made with straight lines fit well together and save space. And we can move easily — physically or mentally — around things made with round lines. But we are in a straitjacket, having to accept one or the other, when often some intermediate form would be better. … The super-ellipse solved the problem. It is neither round nor rectangular, but in between. Yet it is fixed, it is definite — it has a unity.

 “Squaring the Circle” by Troika. These circles aren’t what they seem to be.

There’s another kind of squircular object that I ran across recently. It’s a sculpture called “Squaring the Circle”, and it was created by a trio of artists known as Troika. Check out the images on this page, and then watch a video of the incredible transformation. You can find more examples of room-sized perspective-changing objects in this article.

Next up: it’s been a snowy week here on the east coast, so I thought I’d share some ideas for a great indoor activity—coloring!

Marshall and Violet.

Marshall Hampton is a math professor at University of Minnesota, Duluth. Marshall studies n-body problems—a kind of physics problem that goes all the way back to Isaac Newton and that led to the discovery of chaos. He also uses math to study the genes that cause mammals to hibernate. Marshall made a coloring book full of all kinds of lovely mathematical images for his daughter Violet. He’s also shared it with the world, in both pdf and book form. Check it out!

Inspired by Mashrall’s coloring book, Alex Raichev made one of his own, called Contours. It features contour plots that you can color. Contour plots are what you get when you make outlines of areas that share the same value for a given function. Versions of contour plots often appear on weather maps, where the functions are temperature, atmospheric pressure, or precipitation levels.

Contour plots are useful. Alex shows that they can be beautiful, too!

And there are even more mathematical patterns to explore in the coloring sheets at Patterns for Colouring.

Last up, that’s not a typo in this week’s post title. I really do want to share some snowfakes with you—some artificial snowflake models created with math by Janko Gravner and David Griffeath. You can find out more by reading this paper they authored, or just skim it for the lovely images, some of which I’ve shared below.

I ran across these snowfakes at the Mathematical Imagery page of the American Mathematical Society. There are lots more great math images to explore there.

Bon appetit!

Reflection sheet – Squircles, Coloring Books, and Snowfakes

# Nice Neighbors, Spinning GIFs, and Breakfast

A minimenger.

Welcome to this week’s Math Munch!

Math projects are exciting—especially when a whole bunch of people work together. One example of big-time collaboration is the GIMPS project, where anyone can use their computer to help find the next large prime number. Another is the recent MegaMenger project, where people from all over the world helped to build a giant 3D fractal.

But what if I told you that you can join up with others on the internet to discover some brand-new math by playing a webgame?

Chris Staecker is a math professor at Fairfield University. This past summer he led a small group of students in a research project. Research Experiences for Undergraduates—or REUs, as they’re called—are summer opportunities for college students to be mentored by professors. Together they work to figure out some brand-new math.

The crew from last summer’s REU at Fairfield. Chris is furthest in the back.

The irreducible digital images containing 1, 5, 6, and 7 “chunks”.

Chris and his students Jason Haarmann, Meg Murphy, and Casey Peters worked on a topic in graph theory called “digital images”. Computer images are made of discrete chunks, but we often want to make them smaller—like with pixel art. So how can we make sure that we can make them smaller without losing too much information? That’s an important problem.

Now, the pixels on a computer screen are in a nice grid, but we could also wonder about the same question on an arbitrary connected network—and that’s what Chris, Jason, Meg, and Casey did. Some networks can be made smaller through one-step “neighbor” moves while still preserving the correct connection properties. Others can’t. By the end of the summer, the team had come up with enough results about digital images with up to eight chunks to write about them in a paper.

To help push their research further, Chris has made a webgame that takes larger networks and offers them as puzzles to solve. Here’s how I solved one of them:

See how the graph “retracts” onto itself, just by moving some of the nodes on top of their neighbors? That’s the goal. And there are lots of puzzles to work on. For many of them, if you solve them, you’ll be the first person ever to do so! Mathematical breakthrough! Your result will be saved, the number at the bottom of the screen will go up by one, and Chris and his students will be one step closer to classifying unshrinkable digital images.

Starting with the tutorial for Nice Neighbors is a good idea. Then you can try out the unsolved experimental puzzles. If you find success, please let us know about in the comments!

Do you have a question for Chris and his students? Then send it to us and we’ll try to include it in our upcoming Q&A with them.

Next up: you probably know by now that at Math Munch, we just can’t get enough of great mathy gifs. Well, Sumit Sijher has us covered this week, with his Tumblr called archery.

Here are four of Sumit’s gifs. There are plenty more where these came from. This is a nice foursome, though, because they all spin. Click to see the images full-sized!

 How many different kinds of cubes can you spot? This one reminds me of the Whitney Music Box. Whoa. Clockwise or counterclockwise?

I really appreciate how Sumit also shares the computer code that he uses to make each image. It gives a whole new meaning to “show your work”!

Through Sumit’s work I discovered that WolframAlpha—an online calculator that is way more than a calculator—has a Tumblr, too. By browsing it you can find some groovy curves and crazy estimations. Sumit won an honorable mention in Wolfram’s One-Liner Competition back in 2012. You can see his entry in this video.

And now for the most important meal of the day: breakfast. Mathematicians eat breakfast, just like everyone else. What do mathematicians eat for breakfast? Just about any kind of breakfast you might name. For some audio-visual evidence, here’s a collection of sound checks by Numberphile.

Sconic sections. Yum!

If that has you hungry for a mathematical breakfast, you might enjoy munching on some sconic sectionsa linked-to-itself bagel, or some spirograph pancakes.

Bon appetit!

# George Washington, Tessellation Kit, and Langton’s Ant

Welcome to this week’s Math Munch!

What will you do with your math notebook at the end of the school year? Keep it as a reference for the future? Save it as a keepsake? Toss it out? Turn it into confetti? Find your favorite math bits and doodles and make a collage?

Lucky for us, our first president kept his math notebooks from when he was a young teenager. And though it’s passed through many hands over the years—including those of Chief Justice John Marshall and the State Department—it has survived to this day. That’s right. You can check out math problems and definitions copied out by George Washington over 250 years ago. They’re all available online at the Library of Congress website.

Or at least most of them. They seem to be out of order, with a few pages missing!

That’s what mathematician and math history detective Fred Rickey has figured out. Fred has long been a fan of math history. Since he retired from the US Military Academy in 2011, Fred has been able to pursue his historical interests more actively. Fred is currently studying the Washington cypher books to help prepare a biography about Washington’s boyhood years. You can see two papers that Fred has co-authored about Washington’s mathematics here.

Fred writes:

Washington valued his cyphering books and kept them as a ready source of reference for the rest of his life. This would seem to be particularly true of his surveying studies.

Surveying played a big role in Washington’s career, and math is important for today’s surveyors, too.

Do you have a question for Fred about the math that George Washington learned? Send it to us and we’ll try to include it in our upcoming Q&A with Fred!

A tessellation, by me!

Next up, check out this Tessellation Kit. It was made by Nico Disseldorp, who also made the geometry construction game we featured recently. The kit is a lot of fun to play with!

One thing I like about this Tessellation Kit is how it’s discrete—it deals with large chunks of the screen at a time. This restriction make me want to explore, because it give me the feeling that there are only so many possible combinations.

I’m also curious about the URL for this applet—the web address for it. Notice how it changes whenever you make a change in your tessellation? What happens when you change some of those letters and numbers—like bababaaaa to bababcccc? Interesting…

For another fun applet, check out this doodling ant:

Langton’s Ant.

Langton’s Ant is following a simple set of rules. In a white square? Turn right. In a black square? Turn left. And switch the color of the square that you leave. This ant is an example of a cellular automaton, and we’ve seen several of these here on Math Munch before. This one is different from others because it changes just one square at a time, and not the whole screen at once.

Breaking out of chaos.

There’s a lot that is unknown about Langton’s ant, and it has some mysterious behavior. For example, after thousands of steps of seeming randomness, the ant goes into a steady pattern, paving a highway out to infinity. What gives? Well, you can try out some patterns of your own in the applets on the Serendip website. (previously). And you can read some amusing tales—ant-ecdotes?—about Langton’s ant in this lovely article.

I learned about Langton’s Ant from Richard Evan Schwartz in our new Q&A. In the interview, Rich shares his thoughts about computers, art, what to pursue in life, and of course: Really Big Numbers.

Check it out, and bon appetit!