Tag Archives: interview

The Museum of Math, Shapes That Roll, and Mime-matics

Welcome to this week’s Math Munch!  We have so many exciting things to share with you this week – so let’s get started!

Something very exciting to math lovers all over the world happened on Saturday.  The Museum of Mathematics opened its doors to the public!

MoMath entranceThe Museum of Mathematics (affectionately called MoMath – and that’s certainly what you’ll get if you go there) is in the Math Munch team’s hometown, New York City.

human treeThere are so many awesome exhibits that I hardly know where to start.  But if you go, be sure to check out one of my favorite exhibits, Twist ‘n Roll.  In this exhibit, you roll some very interestingly shaped objects along a slanted table – and investigate the twisty paths that they take.  And you can’t leave without seeing the Human Tree, where you turn yourself into a fractal tree.

coaster rollersOr going for a ride on Coaster Rollers, one of the most surprising exhibits of all.  In this exhibit, you ride in a cart over a track covered with shapes that MoMath calls “acorns.”  The “acorns” aren’t spheres – and yet your ride over them is completely smooth!  That’s because these acorns, like spheres, are surfaces of constant width.  That means that if you pick two points on opposite ends of the acorn – with “opposite” meaning points that you could hold between your hands while your hands are parallel to each other – the distance between those points is the same regardless of the points you choose.  See some surfaces of constant width in action in this video:

Rouleaux_triangle_AnimationOne such surface of constant width is the shape swept out by rotating a shape called a Reuleaux triangle about one of its axes of symmetry.  Much as an acorn is similar to a sphere, a Reuleaux triangle is similar to a circle.  It has constant diameter, and therefore rolls nicely inside of a square.  The cart that you ride in on Coaster Rollers has the shape of a Reuleaux triangle – so you can spin around as you coast over the rollers!

Maybe you don’t live in New York, so you won’t be able to visit the museum anytime soon.  Or maybe you want a little sneak-peek of what you’ll see when you get there.  In any case, watch this video made by mathematician, artist, and video-maker George Hart on his first visit to the museum.  George also worked on planning and designing the exhibits in the museum.

We got the chance to interview Emily Vanderpol, the Outreach Exhibits coordinator for MoMath, and Melissa Budinic, the Assistant Exhibit Designer for MoMath.  As Cindy Lawrence, the Associate Director for MoMath says, “MoMath would not be open today if it were not for the efforts” of Emily and Melissa.  Check out Melissa and Emily‘s interviews to read about their favorite exhibits, how they use math in their jobs for MoMath, and what they’re most excited about now that the museum is open!

mimematicsLogo (1)Finally, meet Tim and Tanya Chartier.  Tim is a math professor at Davidson College in North Carolina, and Tanya is a language and literacy educator.  Even better, Tim and Tanya have combined their passion for math and teaching with their love of mime to create the art of Mime-matics!  Tim and Tanya have developed a mime show in which they mime about some important concepts in mathematics.  Tim says about their mime-matics, “Mime and math are a natural combination.  Many mathematical ideas fold into the arts like shape and space.  Further, other ideas in math are abstract themselves.  Mime visualizes the invisible world of math which is why I think math professor can sit next to a child and both get excited!”

One of my favorite skits, in which the mime really does help you to visualize the invisible world of math, is the Infinite Rope.  Check it out:

slinkyIn another of my favorite skits, Tanya interacts with a giant tube that twists itself in interesting topological ways.  Watch these videos and maybe you’ll see, as Tanya says, how a short time “of positive experiences with math, playing with abstract concepts, or seeing real live application of math in our world (like Google, soccer, music, NASCAR, or the movies)  can change the attitude of an audience member who previously identified him/herself as a “math-hater.””  You can also check out Tim’s blog, Math Movement.

Tim and Tanya kindly answered some questions we asked them about their mime-matics.  Check out their interview by following this link, or visit the Q&A page.

Bon appetit!

Pixel Art, Gothic Circle Patterns, and First Past the Post

Welcome to this week’s Math Munch!

Guess what? Today is Math Munch’s one-year anniversary!

We’re so grateful to everyone who has made this year so much fun: our students and readers; everyone who has spread the word about Math Munch; and especially all the people who do and make the cool mathy things that we so love to find and share.

Speaking of which…

Mathematicians have studied the popular puzzle called Sudoku in numerous ways. They’ve counted the number of solutions. They’ve investigated how few given numbers are required to force a unique solution. But Tiffany C. Inglis came at this puzzle craze from another angle—as a way to encode pixel art!

Tiffany studies computer graphics at the University of Waterloo in Ontario, Canada. She’s a PhD candidate at the Computer Graphics Lab (which seems like an amazing place to work and study—would you check out these mazes!?)

Tiffany C. Inglis, hoisting a buckyball

Tiffany tried to find shading schemes for Sudoku puzzles so that pictures would emerge—like the classic mushroom pictured above. Sudoku puzzles are a pretty restrictive structure, but Tiffany and her collaborators had some success—and even more when they loosened the rules a bit. You can read about (and see!) some of their results on this rad poster and in their paper.

Thinking about making pictures with Sudoku puzzles got Tiffany interested in pixel art more generally. “I did some research on how to create pixel art from generic images such as photographs and realized that it’s an unexplored area of research, which was very exciting!” Soon she started building computer programs—algorithms—to automatically convert smooth line art into blockier pixel art without losing the flavor of the original. You can read more about Tiffany’s pixelization research on this page of her website. You should definitely check out another incredible poster Tiffany made about this research!

To read more of my interview with Tiffany, you can click here.

Cartoon Tiffany explains what makes a good pixelization. Check out the full comic!

I met Tiffany this past summer at Bridges, where she both exhibited her artwork and gave an awesome talk about circle patterns in Gothic architecture. You may be familiar with Apollonian gaskets; Gothic circle patterns have a similar circle-packing feel to them, but they have some different restrictions. Circles don’t just squeeze in one at a time, but come in rings. It’s especially nice when all of the tangencies—the places where the circles touch—coincide throughout the different layers of the pattern. Tiffany worked on the problem of when this happens and discovered that only a small family has this property. Even so, the less regular circle patterns can still produce pleasing effects. She wrote about this and more in her paper on Gothic circle patterns.

I’m really inspired by how Tiffany finds new ideas in so many place, and how she pursues them and then shares them in amazing ways. I hope you’re inspired, too!

A rose window at the Milan Cathedral, with circle designs highlighted.

A mathematical model similar to the window, which Tiffany created.

An original design by Tiffany. All of these images are from her paper.

Here’s another of Tiffany’s designs. Now try making one of your own!

Using the Mathematica code that Tiffany wrote to build her diagrams, I made an applet where you can try making some circle designs of your own. Check it out! If you make one you really like—and maybe color it in—we’d love to see it! You can send it to us at MathMunchTeam@gmail.com.

(You’ll may have to download a plug-in to view the applet; it’s the same plug-in required to use the Wolfram Demonstrations Project.)

Finally, with Election Day right around the corner, how about a dose of the mathematics of voting?

I’m a fan of this series of videos about voting theory by C.G.P. Grey. Who could resist the charm of learning about the alternative vote from a wallaby, or about gerrymandering from a weasel? Below you’ll find the first video in his series, entitled “The Problems with First Past the Post Voting Explained.” Majority rule isn’t as simple of a concept as you might think, and math can help to explain why. As can jungle animals, of course.

Thanks again for being a part of our Math Munch fun this past year. Here’s to a great second course! Bon appetit!


PS I linked to a bunch of papers in this post. After all, that’s the traditional first anniversary gift!

Stand-Up, Relatively Prime, and Aliens?

Welcome to this week’s Math Munch!

As you may have noticed, we here at Math Munch are all about good math videos.  Well, with Matt Parker’s math stand-up comedy YouTube channel, we feel like we’ve hit the jackpot!

Yes, you read it right – Matt is a math stand-up comedian.  Matt does stand-up comedy routines about mathematics at schools and math conferences in the United Kingdom.  In fact, he and several other mathematicians and teachers have started an organization called Think Maths that sends funny and entertaining mathematicians to schools to get kids more excited about math.  He also does podcasts  and is writing a book!  Cool!

Here are two of my favorite videos from Matt’s channel.  The first is a problem involving a sleeping princess and a sneaky prince.  I haven’t solved the problem yet – so, if you do, don’t give away the answer!

[youtube http://www.youtube.com/watch?v=nv0Onj3wXCE&feature=plcp]

In the second, Matt shows you how to look like you know how to solve a Rubik’s cube and impress your friends.  And it teaches you some interesting facts about Rubik’s cubes at the same time.

[youtube http://www.youtube.com/watch?v=aPD_OkjnCqU&feature=plcp]

We’ve dug deep into the world of cool, mathy videos – but how about cool, mathy radio?  Personally, I love radio.  And I love math – so what could be better than a radio podcast about math?

Check out this new series of podcasts about mathematics by Samuel Hansen.  It’s called Relatively Prime.  The first episode has just been released!  It’s about the fascinating (and a little scary) topic of the three mathematical tools that you’ll need to survive, in Samuel’s words, “the coming apocalypse.”  And what are these tools?  Game theory, the mathematics of risk, and geometric reasoning.  How will these mathematical ideas help you?  Well, listen to the podcast and find out!  The podcast features interviews with many mathematicians, including Edmund Harris (who we wrote about in April) and Matt Parker.

I especially like this podcast because it gives some good answers to the question, “What can mathematics be used for?”  Even though I love doing math just for fun, I sometimes wonder how math can be used in other subjects and problems I might face in my life outside of math.  If you wonder this sometimes, too, you might like listening to this podcast.

We had the opportunity to interview Samuel about mathematics and the making of Relatively Prime.  Check out the interview on the Q&A page.

Finally, talking about the apocalypse (and the uses of math) makes me think about alien encounters.  What are the chances that there’s an intelligent alien civilization out there?  There are a lot of factors that go into answering this question – such as, what are the chances that a planet will develop life?  The evaluation of these chances is largely a matter of science, as is actually contacting aliens.  But math can be used to come up with a formula that tells us how likely it is that we’ll encounter aliens, given the other chances and how they relate to each other.

The equation that models this is called the Drake Equation.  It was developed in 1961 by a scientist named Dr. Frank Drake and has been used by scientists ever since to calculate the chances that there are intelligent aliens for us to talk to.  The equation is particularly interesting because small changes in, say, the number of stars that have planets, can drastically change the chance that we’ll encounter aliens.

Want to play with this equation?  Check out this awesome infographic about the Drake Equation from the BBC.  You can decide for yourself the chances that a planet will develop life and the number of years we’ll be sending messages to aliens or use numbers that scientists think might be accurate.

Bon appetit!  And watch out for aliens.  If my calculations are correct, there are a lot of them out there.