Tag Archives: recreational mathematics

Girls’ Angle, Spiral Tilings, and Coins

Welcome to this week’s Math Munch!

GirlsAngleCoverGirls’ Angle is a math club for girls. Since 2007 it has helped girls to grow their love of math through classes, events, mentorship, and a vibrant mathematical community. Girls’ Angle is based in Cambridge, Massachusetts, but its ideas and resources reach around the world through the amazing power of the internet. (And don’t you worry, gentlemen—there’s plenty for you to enjoy on the site as well.)

Amazingly, the site contains an archive of every issue of Girls’ Angle Bulletin, a wonderful bimonthly journal to “foster and nurture girls’ interest in mathematics.” In their most recent issue, you’ll find an interview with mathematician Karen E. Smith, along with several articles and puzzles about balance points of shapes.

There’s so much to dig into at Girls’ Angle! In addition to the Bulletins, there are two pages of mathematical videos. The first page shares a host of videos of women in mathematics sharing a piece of math that excited them when they were young. The most recent one is by Bridget Tenner, who shares about Pick’s Theorem. The second page includes several videos produced by Girls’ Angle, including this one called “Summer Vacation”.

Girls’ Angle can even help you buy a math book that you’d like, if you can’t afford it. For so many reasons, I hope you’ll find some time to explore the Girls’ Angle site over your summer break. (And while you’ve got your explorer’s hat on, maybe you’ll tour around Math Munch, too!)

I did a Google search recently for “regular tilings.” I needed a few quick pictures of the usual triangle, square, and hexagon tilings for a presentation I was making. As I scrolled along, this image jumped out at me:

hexspiral

What is that?! It certainly is a tiling, and all the tiles are the “same”—even if they are different sizes. Neat!

Clicking on the image, I found myself transported to a page all about spiral tilings at the Geometry Junkyard. The site is a whole heap of geometrical odds and ends—and a place that I’ve stumbled across many times over the years. Here are a few places to get started. I’m sure you’ll enjoy poking around the site to find some favorite “junk” of your own.

Spirals

Spirals

Circles and spheres

Circles & spheres

Coloring

Coloring

Last up this week, you may have seen this coin puzzle before. Can you make the triangle point downwards by moving just three pennies?triangleflip

There are lots of variants of this puzzle. You can find some in an online puzzle game called Coins. In the game you have to make arrangements of coins, but the twist is that you can only move a coin to a spot where would it touch at least two other coins. I’m enjoying playing Coins—give it a try!

I solved this Coins puzzle in four moves. Can you? Can you do better?

I solved this Coins puzzle in four moves. Can you? Can you do better?

That’s it for this week’s Math Munch. Bon appetit!

 

Math Awareness Month, Hexapawn, and Plane Puzzles

Welcome to this week’s Math Munch!

April is Mathematics Awareness Month. So happy Mathematics Awareness Month! This year’s theme is “Mathematics, Magic, and Mystery”. It’s inspired by the fact that 2014 would have marked Martin Gardner’s 100th birthday.

MAM

A few of the mathy morsels that await you this month on mathaware.org!

Each day this month a new piece of magical or mysterious math will be revealed on the MAM site. The mathematical offering for today is a card trick that’s based on the Fibonacci numbers. Dipping into this site from time to time would be a great way for you to have a mathy month.

It is white

It is white’s turn to move. Who will win this Hexapawn game?

Speaking of Martin Gardner, I recently ran across a version of Hexapawn made in the programming language Scratch. Hexapawn is a chess mini-game involving—you guessed it—six pawns. Martin invented it and shared it in his Mathematical Games column in 1962. (Here’s the original column.) The object of the game is to get one of your pawns to the other side of the board or to “lock” the position so that your opponent cannot move. The pawns can move by stepping forward one square or capturing diagonally forward. Simple rules, but winning is trickier than you might think!

The program I found was created by a new Scratcher who goes by the handle “puttering”. On the site he explains:

I’m a dad. I was looking for a good way for my daughters to learn programming and I found Scratch. It turns out to be so much fun that I’ve made some projects myself, when I can get the computer…

puttering's Scratch version of Conway's Game of Life

puttering’s Scratch version of Conway’s Game of Life

Something that’s super cool about puttering’s Hexapawn game is that the program learns from its stratetgy errors and gradually becomes a stronger player as you play more! It’s well worth playing a bunch of games just to see this happen. puttering has other Scratch creations on his page, too—like a solver for the Eight Queens puzzle and a Secret Code Machine. Be sure to check those out, too!

Last up, our friend Nalini Joshi recently travelled to a meeting of the Australian Academy of Science, which led to a little number puzzle.

nalini3

What unusual ways of describing a number! Trying to learn about these terms led me to an equally unusual calculator, hosted on the Math Celebrity website. The calculator will show you calculations about the factors of a numbers, as well as lots of categories that your number fits into. Derek Orr of Math Year-Round and I figured out that Nalini’s clues fit with multiple numbers, including 185, 191, and 205. So we needed more clues!

Can you find another number that fits Nalini’s clues? What do you think would be some good additional questions we could ask Nalini? Leave your thoughts in the comments!

unusualcalc

A result from the Number Property Calculator

I hope this post helps you to kick off a great Mathematics Awareness Month. Bon appetit!

Light Bulbs, Lanterns, and Lights Out

Welcome to this week’s Math Munch!

thomas-edison

Edison with his light bulb.

On this day in 1880, Thomas Edison was given a patent for his most famous bright idea—the light bulb.

Edison once said, “Genius is one per cent inspiration, ninety-nine per cent perspiration”—a good reminder that putting in some work is important both in math and in life. He also said, “We don’t know a millionth of one percent about anything.” A humbling thought. Also, based on that quote, it sounds like Edison might have had a use for permilles or even permyraids in addition to percents!

Mike's octahedron.

Mike’s octahedron-in-a-light-buld.

In celebration of this illustrious anniversary, I’d like to share some light mathematical fare relating to, well, light bulbs. For starters, J. Mike Rollins of North Carolina has created each of the Platonic solids inside of light bulbs, ship-in-a-bottle style. Getting just the cube to work took him the better part of twelve hours! Talk about perspiration. Mike has also made a number of lovely Escher-inspired woodcuts. Check ’em out!

Evelyn's Schwartz lantern.

Evelyn’s Schwartz lantern.

Next up is a far-out example from calculus that’s also a good idea for an art project. It’s called the Schwartz lantern. I found out about this amazing object last fall when Evelyn Lamb tweeted and blogged about it.

The big idea of calculus is that we can find exact answers to tough problems by setting up a pattern of approximations that get better and better and then—zoop! take the process to its logical conclusion at infinity. But there’s a catch: you have to be careful about how you set up your pattern!

A "nicely" triangulated cylinder.

A “nicely” triangulated cylinder.

For example, if you take a cylinder and approximate its surface with a bunch of triangles carefully, you’ll end up with a surface that matches the cylinder in shape and size. But if you go about the process in a different way, you can end up with a surface that stays right near the cylinder but that has infinite area. That’s the Schwartz lantern, first proposed by Karl Hermann Amandus Schwarz of Cauchy-Schwartz fame. The infinite area happens because of all the crinkles that this devilish pattern creates. For some delightful technical details about the lantern’s construction, check out Evelyn’s post and this article by Conan Wu.

Maybe you’ll try folding a Schwartz lantern of your own. There’s a template and instructions on Conan’s blog to get you started. You’ll be glowing when you finish it up—especially if you submit a photo of it to our Readers’ Gallery. Even better, how about a video? You could make the internet’s first Schwartz lantern short film!

Robert Torrence and his Lights Out puzzle.

Robert and his Lights Out puzzle.

At the MOVES Conference last fall, Bruce Torrence of Randolf-Macon College gave a talk about the math of Lights Out. Lights Out is a puzzle—a close relative of Ray Ray—that’s played on a square grid. When you push one of the buttons in the grid it switches on or off, and its neighbors do, too. Bruce and his son Robert created an extension of this puzzle to some non-grid graphs. Here’s an article about their work and here’s an applet on the New York Times website where you can play Lights Out on the Peterson graph, among others. You can even create a Lights Out puzzle of your own! If it’s more your style, you can try a version of the original game called All Out on Miniclip.

The original Lights Out handheld game from 1995.

The original Lights Out handheld game from 1995.

There’s a huge collection of Lights Out resources on Jaap’s Puzzle Page (previously), including solution strategies, variations, and some great counting problems. Lights Out and Ray Ray are both examples of what’s called a “sigma-plus game” in the mathematical literature. Just as a bonus, there’s this totally other game called Light Up. I haven’t solved a single puzzle yet, but my limitations shouldn’t stop you from trying. Perspiration!

All this great math work might make you hungry, so…bon appetit!